RAPID: Collaborative Research: Modeling and Learning-based Design of Social Distancing Policies for COVID-19
RAPID:协作研究:针对 COVID-19 的社交距离政策的建模和基于学习的设计
基本信息
- 批准号:2030018
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Human contacts underlie the spread of any infectious diseases including COVID-19. For COVID-19, the widely implemented social distancing policies are designed precisely to drastically reduce individual travels and the resulting contacts. In a number of States, these policies have effectively reduced the peak number of infections. These policies have also come with huge costs on the society, economy and people’s lives: US economy has largely come to a halt and the number of unemployment claims has now exceeded the worst of the 2008-2009 financial crisis. This rapid COVID-19 application will develop a novel meta-population level model simulating the spread of COVID-19 and utilize reinforcement learning to explore optimal congregation restriction policies for social distancing. The technical approach will develop an SIQR (Susceptible, Infected, Quarantined, and Recovered) model integrated with reinforcement learning for continuous monitoring and policy adjustment. The SIQR model is built on the classic literature of the SIR (susceptible, infectious and recovered) and SEIR (susceptible, exposed, infectious, and recovered) models and enhances their capability to capture the unique quarantine features for COVID-19. The key focus of the proposed project is on the connection of the SIQR model to reinforcement learning to realize a control loop that provides optimal policy in spite of sparse and noisy observations. This is an important contribution to this emerging, interdisciplinary science of infectious disease modeling and control. The results of this project will have both immediate importance for designing the response to COVID-19 and also contribute to the broader development of an interdisciplinary education and research program involving infectious disease modeling, reinforcement learning and machine learning of big data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类接触是包括COVID-19在内的任何传染病传播的基础。针对COVID-19,广泛实施的社会距离政策正是为了大幅减少个人旅行和由此产生的接触。在一些国家,这些政策有效地减少了感染高峰人数。这些政策也给社会、经济和人民生活带来了巨大的代价:美国经济基本陷入停滞,失业人数已超过2008-2009年金融危机最严重时期。这个快速的COVID-19应用程序将开发一个新的元人群水平模型来模拟COVID-19的传播,并利用强化学习来探索社交距离的最佳聚集限制政策。技术方法将开发SIQR(易感、感染、隔离和恢复)模型,并与强化学习相结合,用于持续监测和政策调整。SIQR模型建立在SIR(易感、感染和恢复)和SEIR(易感、暴露、感染和恢复)模型的经典文献基础上,增强了它们捕捉COVID-19独特隔离特征的能力。提出的项目的重点是SIQR模型与强化学习的连接,以实现一个控制回路,该控制回路在稀疏和噪声观测的情况下提供最优策略。这是对这一新兴的传染病建模和控制的跨学科科学的重要贡献。该项目的成果将对设计COVID-19应对措施具有直接重要性,并有助于更广泛地发展涉及传染病建模、强化学习和大数据机器学习的跨学科教育和研究项目。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vijay Gupta其他文献
A Nanomaterial Registry
纳米材料登记处
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
K. Guzan;Vijay Gupta;K. Mills;M. Ostraat - 通讯作者:
M. Ostraat
Integration of data: the Nanomaterial Registry project and data curation
数据整合:纳米材料登记项目和数据管理
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K. Guzan;K. Mills;Vijay Gupta;D. Murry;C. Scheier;Daphne Willis;M. Ostraat - 通讯作者:
M. Ostraat
An event-triggered protocol for distributed optimal coordination of double-integrator multi-agent systems
双积分多智能体系统分布式优化协调的事件触发协议
- DOI:
10.1016/j.neucom.2018.08.073 - 发表时间:
2018-11 - 期刊:
- 影响因子:6
- 作者:
Dong Wang;Vijay Gupta;Wei Wang - 通讯作者:
Wei Wang
Moment Generating Functions and Moments of Linear Positive Operators
矩生成函数和线性正算子的矩
- DOI:
10.1007/978-3-319-74325-7_8 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Vijay Gupta;Neha Malik;T. Rassias - 通讯作者:
T. Rassias
A NOTE ON COMMON FIXED POINTS
关于常见定点的说明
- DOI:
- 发表时间:
1971 - 期刊:
- 影响因子:0
- 作者:
P. Srivastava;Vijay Gupta - 通讯作者:
Vijay Gupta
Vijay Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vijay Gupta', 18)}}的其他基金
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
- 批准号:
2222097 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
- 批准号:
2334551 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Adaptive, Human-centric Demand-side Flexibility Coordination At-scale in Electric Power Networks
合作研究:CPS:中:电力网络中大规模的自适应、以人为中心的需求方灵活性协调
- 批准号:
2208794 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Adaptive, Human-centric Demand-side Flexibility Coordination At-scale in Electric Power Networks
合作研究:CPS:中:电力网络中大规模的自适应、以人为中心的需求方灵活性协调
- 批准号:
2300355 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Fast Numerical Simulations of Low Void Fraction Disperse Multiphase Systems using Event-Triggered Communication
CDS
- 批准号:
2225978 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
AI Institute: Planning: AI-Enabled Secure and Responsive Smart Manufacturing
人工智能研究院:规划:人工智能赋能的安全响应式智能制造
- 批准号:
2020246 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Fast Numerical Simulations of Low Void Fraction Disperse Multiphase Systems using Event-Triggered Communication
CDS
- 批准号:
1953090 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Exploring Deformation Mechanisms in Metallic Nanostructures Under Extreme Conditions of Temperature and Strain Rate
探索极端温度和应变率条件下金属纳米结构的变形机制
- 批准号:
1710736 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CPS:Small:Collaborative Research: Incentivizing Desirable User Behavior in a Class of CPS
CPS:Small:协作研究:在一类 CPS 中激励期望的用户行为
- 批准号:
1739295 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Understanding and Controlling Atomic-Scale Mechanisms for Imparting Room Temperature Ductility in Tungsten and BCC Metals
了解和控制赋予钨和 BCC 金属室温延展性的原子尺度机制
- 批准号:
1727740 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant