RAPID: Antiviral Functionalized Membrane Mask and Nanostructured Materials for Corona Virus Capture and Deactivation

RAPID:用于捕获和灭活冠状病毒的抗病毒功能化膜和纳米结构材料

基本信息

项目摘要

The current coronavirus pandemic has created a severe societal health issue, resulting in significant economic problems across the globe. The novel coronavirus particles (ten thousandths of a millimeter) are covered in club-shaped “S-protein” spikes, which give it its crown-like, or coronal, appearance. These protein spikes allow the virus to readily enter host cells once in the body, resulting in a highly infectious and readily transmissible disease. This project will develop layered membrane-based materials that are capable of deactivating these spike proteins. With humid air containing corona virus droplets, the developed functionalized membranes will enable attachment to the protein spikes of the coronavirus and disarm the virus. In addition, the thin membrane architecture should result in a highly breathable mask. This project will result in the development of advanced barrier devices (such as, face masks) capable of recognition-based capturing and deactivating coronavirus-type active particles. The integration of science between advanced materials and medical/biological sciences will have immense societal impact. This RAPID effort will also enhance interactions with industries for bringing the application of functionalized membrane and virus recognition technology to the medical field and industrial manufacturing sector where airborne virus or other nanoparticles present a potential health hazard. Students with diverse background will be exposed to multidisciplinary research involving chemical/environmental engineering, biological chemistry, and electrical engineering. This project is jointly funded by the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).This RAPID project will involve the development of functionalized, open structured and highly breathable membranes with attached enzymes and/or antibodies. This will allow for a significant improvement in the efficacy and safety of the diffusion and impact filtration mechanisms and subsequent deactivation parameters for PPE. This innovative RAPID project will result in the development of new materials which incorporate integration of easily adaptable virus cleavage and recognition materials on existing cellulosic and other membrane polymer films which are easily scalable. The overall project will involve enzyme/antibody attachment on surfaces, and material evaluation using synthetic and plasmonic aerosol nanoparticles functionalized with spike glycoprotein found in corona virus. This novel approach includes means for maintaining hydration for enzyme activity. The plasmonic particles will act as “smart” labels to determine both particle location in the material and enzyme-protein interactions. The integrated research on functionalized membranes, virus particle quantification approaches, and novel virus analogs will advance the state of the art in anti-viral barrier materials while deepening fundamental understanding of virus-enzyme-antibody interactions on surfaces. This RAPID effort will also enhance additional interactions with industries for bringing the application of functionalized membrane and virus recognition technology to the medical field and industrial manufacturing sector where airborne virus or other nanoparticles present a potential health hazard. Students with diversified background will be exposed to multidisciplinary research involving chemical/environmental engineering, biological chemistry, and electrical engineering. This project is jointly funded by the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前的冠状病毒大流行造成了严重的社会健康问题,在全球范围内造成了严重的经济问题。这种新颖的冠状病毒颗粒(万分之一毫米)被棒状的“S蛋白”刺状覆盖,这使其具有冠状或冠状外观。这些蛋白质尖峰使病毒一旦进入体内就可以很容易地进入宿主细胞,导致一种高度传染性和容易传播的疾病。该项目将开发能够使这些尖峰蛋白失活的层状膜材料。在含有冠状病毒液滴的潮湿空气中,开发的功能化薄膜将能够附着在冠状病毒的蛋白质尖峰上,并解除病毒的武装。此外,薄膜结构应该产生一个高度透气的口罩。该项目将导致开发先进的屏障设备(如面罩),能够基于识别捕获和停用冠状病毒类型的活性颗粒。先进材料与医学/生物科学之间的科学融合将产生巨大的社会影响。这一快速努力还将加强与各行业的互动,将功能化膜和病毒识别技术的应用带到医疗领域和工业制造部门,在这些领域,空气传播的病毒或其他纳米颗粒对健康构成潜在危害。不同背景的学生将接触到涉及化学/环境工程、生物化学和电气工程的多学科研究。该项目由化学、生物工程、环境和运输系统(CBET)部门和既定的刺激竞争研究计划(EPSCoR)共同资助。这一快速项目将涉及开发带有附加酶和/或抗体的功能化、开放式结构和高度透气性的膜。这将大大改善PPE的扩散和冲击过滤机制以及随后的失活参数的有效性和安全性。这一创新的快速项目将导致新材料的开发,这种材料将易于适应的病毒切割和识别材料集成到现有的纤维素膜和其他易于伸缩的膜聚合物膜上。整个项目将涉及酶/抗体在表面的附着,以及使用合成和血浆气雾剂纳米颗粒的材料评估,这些纳米颗粒具有冠状病毒中发现的尖峰糖蛋白的功能。这种新的方法包括维持水合作用以保持酶活性的方法。等离子体粒子将充当“智能”标签,以确定粒子在材料和酶-蛋白质相互作用中的位置。功能化膜、病毒颗粒定量方法和新型病毒类似物的综合研究将推动抗病毒屏障材料的发展,同时加深对病毒-酶-抗体表面相互作用的基本了解。这一快速努力还将加强与行业的更多互动,将功能化膜和病毒识别技术的应用带到医疗领域和工业制造部门,在这些领域,空气传播的病毒或其他纳米颗粒对健康构成潜在危害。不同背景的学生将接触到涉及化学/环境工程、生物化学和电气工程的多学科研究。该项目由化学、生物工程、环境和运输系统(CBET)分部和既定的激励竞争研究计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aerosol capture and coronavirus spike protein deactivation by enzyme functionalized antiviral membranes.
通过酶功能化抗病毒膜捕获气溶胶和使冠状病毒刺突蛋白失活。
  • DOI:
    10.1038/s43246-022-00256-0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Mills,Rollie;Vogler,RonaldJ;Bernard,Matthew;Concolino,Jacob;Hersh,LouisB;Wei,Yinan;Hastings,JeffreyTodd;Dziubla,Thomas;Baldridge,KevinC;Bhattacharyya,Dibakar
  • 通讯作者:
    Bhattacharyya,Dibakar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dibakar Bhattacharyya其他文献

Adsorptive nanofibrous membranes for bidirectional removal of cationic and anionic dyes
用于双向去除阳离子和阴离子染料的吸附性纳米纤维膜
  • DOI:
    10.1016/j.seppur.2025.131515
  • 发表时间:
    2025-07-19
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Hongyi Wan;Xun Zhu;Jianjun Wang;Fan Cao;Yuchun Zhang;Zuying Yao;Shaofei Wang;Dibakar Bhattacharyya;Kewen Tang
  • 通讯作者:
    Kewen Tang
Rapid removal of PFOA and PFOS via modified industrial solid waste: mechanisms and influences of water matrices
通过改性工业固体废物快速去除 PFOA 和 PFOS:水基质的机制和影响
  • DOI:
    10.1016/j.cej.2021.133271
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Hongyi Wan;Rollie Mills;Kai Qu;James C. Hower;M. Abdul Mottaleb;Dibakar Bhattacharyya;Zhi Xu
  • 通讯作者:
    Zhi Xu
Rapid removal of PFOA and PFOS via modified industrial solid waste: mechanisms and influences of water matrices
  • DOI:
    10.1016/j.cej.2021.133271. 2021.11.01
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Hongyi Wan;Rollie Mills;Kai Qu;James C. Hower;M. Abdul Mottaleb;Dibakar Bhattacharyya;Zhi Xu
  • 通讯作者:
    Zhi Xu
Dual-functional adsorptive membranes for PFAS removal: Mechanism, CFD simulation, and selective enrichment
  • DOI:
    10.1016/j.cej.2024.156095
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Hongyi Wan;Fumohan Fang;Ke Shi;Zhiyuan Yi;Lelin Zeng;Dibakar Bhattacharyya;Kewen Tang;Zhi Xu
  • 通讯作者:
    Zhi Xu

Dibakar Bhattacharyya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dibakar Bhattacharyya', 18)}}的其他基金

EAGER: Nanoparticle Enhanced Near-IR Photobacterial Conversion of Organic Waste to Hydrogen
EAGER:纳米粒子增强近红外光细菌将有机废物转化为氢气
  • 批准号:
    1700091
  • 财政年份:
    2017
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant

相似海外基金

Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
  • 批准号:
    10748776
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
Regulation of RIG-I mediated antiviral response upon influenza A virus infection
RIG-I介导的甲型流感病毒感染抗病毒反应的调节
  • 批准号:
    494286
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Operating Grants
Defining the antiviral effects of Wolbachia in Aedes aegypti mosquitoes
确定沃尔巴克氏体对埃及伊蚊的抗病毒作用
  • 批准号:
    DP220102997
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Discovery Projects
Molecular mechanism of antiviral immune response by RNA-induced phase separation
RNA诱导相分离抗病毒免疫反应的分子机制
  • 批准号:
    23K06557
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanism of TRIM25 and ZAP mediated antiviral inhibition of arenavirus replication
TRIM25和ZAP介导的抗病毒抑制沙粒病毒复制的分子机制
  • 批准号:
    2885907
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Studentship
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
  • 批准号:
    10682185
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
Prenylation in antiviral immunity
抗病毒免疫中的异戊二烯化
  • 批准号:
    10647533
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
Discovery of antiviral inhibitors for the treatment of orthopoxvirus infections
发现治疗正痘病毒感染的抗病毒抑制剂
  • 批准号:
    10761185
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
Ionic Liquids of tenofovir prodrugs for improved oral bioavailability and antiviral efficacy
替诺福韦前药离子液体可提高口服生物利用度和抗病毒功效
  • 批准号:
    10699620
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
Mechanisms of antiviral immunity and tolerance in the intestinal epithelium of Jamaican Fruit Bats
牙买加果蝠肠上皮的抗病毒免疫和耐受机制
  • 批准号:
    10592671
  • 财政年份:
    2023
  • 资助金额:
    $ 15.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了