RAPID: Viral Particle Disrupting and Sequestering Polymer Materials applied to Coronaviruses

RAPID:用于冠状病毒的病毒颗粒破坏和隔离聚合物材料

基本信息

  • 批准号:
    2030567
  • 负责人:
  • 金额:
    $ 18.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

This is an NSF RAPID award in response to the 2020 CARES Act and is managed by the Polymers Program in the Division of Materials Research of the Directorate for Mathematical and Physical Sciences.PART 1: NON-TECHNICAL SUMMARYSince the first cases of coronavirus disease 2019 (COVID-19) appeared in late 2019, the disease has infected millions globally. The virus responsible for COVID-19 can stay active, capable of causing infections, on various surfaces for days, during which time indirect contact transmission could occur. Coronaviruses contain both a surface envelope of lipids and surface presented proteins which resemble spikes. Both of these features of the virus can be used to trap and destroy the viruses within synthetic materials. Synthetic polymer materials capable of inactivating and sequestering the virus causing COVID-19 will be developed in this project. These materials will form tough structures, with the materials containing synthetic and natural groups to both disrupt the lipid molecules on the surface of the virus and to bind and trap the coronavirus spike proteins. The polymers will form a tough network, ensuring the material performs for an extended period of time. This research involves design and synthesis of polymers as well as characterization and study of their mechanical properties and focuses on developing materials that could be adapted or coated onto existing high-touch surfaces. Additionally, the project will create publicly accessible virtual presentations and content on how polymer materials are critical for the health care industry and innovations in materials for biomedical applications. With the development of materials with excellent durability and robust ability to disrupt and trap the coronavirus, a reduction in COVID-19 infection by mitigating the indirect contact transmission mechanism is possible.PART 2: TECHNICAL SUMMARYSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits active lifetimes of over 24 hours. This enables transmission to occur hours or days after a virus containing droplet is deposited from an infected individual. Materials that destroy the virus and sequester the virus to the surface could reduce the transmission rate of coronavirus disease 2019 (COVID-19). This project will develop virus trapping and disrupting tough networks which could be used to coat commonly encountered surfaces. The polymer materials will disrupt the lipid envelope of SARS-CoV-2 viral particles and bind the spike on the surface of SARS-CoV-2 with high affinity. Both purely synthetic materials as well as hybrid peptide/synthetic materials approaches will be investigated. The polymers will include tough network forming functionalities as well as peptide or synthetic polymers for both lipid envelope disruption and spike protein binding. The scientific focus of the project is to determine how a polymer material's microstructure and functionality impacts its ability to: form tough and mechanically robust networks; disrupt viral lipid envelopes; and immobilize SARS-CoV-2 through the surface spike proteins. A library of polymer materials containing distinct crosslink densities and macromolecular architectures will be used to determine how polymer structure impacts a material's mechanical property, lipid particle rupturing capability, and ability to bind to SARS-CoV-2 spike proteins. This will guide the design of materials for optimal mechanical performance and coronavirus disrupting capabilities, and will facilitate the design of surface coatings that can hinder indirect contact transmission with long lifetimes of the structures. To remotely engage with the public on the importance of polymer materials, a series of monthly YouTube videos will be developed to convey how polymer materials are critical to health and safety, highlighting developments in materials for healthcare and biomedical applications.This grant is being awarded using funds made available by the Coronavirus Aid, Relief, and Economic Security (CARES) Act supplement allocated to MPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是美国国家科学基金会为响应2020年CARE法案而颁发的快速奖项,由数学和物理科学局材料研究部聚合物计划管理。第1部分:非技术性总结自2019年末出现首例冠状病毒病(新冠肺炎)以来,该疾病已感染全球数百万人。导致新冠肺炎的病毒可以在各种表面保持活跃,能够引起感染数天,在此期间可能会发生间接接触传播。冠状病毒既包含表面脂质的包膜,也包含表面呈现的类似尖刺的蛋白质。病毒的这两个特征都可以用来捕获和摧毁合成材料中的病毒。该项目将开发能够灭活和隔离引起新冠肺炎的病毒的合成聚合物材料。这些材料将形成坚韧的结构,含有合成基团和天然基团的材料既能破坏病毒表面的脂分子,又能结合和捕获冠状病毒刺突蛋白。聚合物将形成坚韧的网络,确保材料在更长的时间内运行。这项研究涉及聚合物的设计和合成,以及对其机械性能的表征和研究,重点是开发可适应或涂覆在现有高接触表面的材料。此外,该项目将创建公开可访问的虚拟演示文稿和内容,介绍聚合物材料对医疗保健行业的关键作用,以及生物医学应用材料的创新。随着具有优异耐用性和强大的破坏和捕获冠状病毒能力的材料的开发,通过缓解间接接触传播机制来减少新冠肺炎感染是可能的。第2部分:技术摘要严重急性呼吸综合征冠状病毒2(SARS-CoV-2)显示出超过24小时的有效生命周期。这使得传播可以在含有飞沫的病毒从感染者身上沉积几小时或几天后发生。破坏病毒并将病毒隔离到表面的材料可以降低冠状病毒病2019年的传播率(新冠肺炎)。该项目将开发病毒捕获和破坏坚固的网络,可以用来覆盖经常遇到的表面。聚合物材料将破坏SARS-CoV-2病毒颗粒的脂膜,并以高亲和力结合SARS-CoV-2表面的刺突。将研究纯合成材料和杂化多肽/合成材料的方法。这些聚合物将包括坚韧的网络形成功能,以及用于脂膜破坏和尖峰蛋白结合的多肽或合成聚合物。该项目的科学重点是确定聚合物材料的微结构和功能如何影响其能力:形成坚韧和机械坚固的网络;破坏病毒脂膜;通过表面尖峰蛋白固定SARS-CoV-2。包含不同交联密度和大分子结构的聚合物材料库将被用来确定聚合物结构如何影响材料的机械性能、脂质颗粒破裂能力以及与SARS-CoV-2刺突蛋白结合的能力。这将指导材料的设计,以实现最佳的机械性能和冠状病毒破坏能力,并将促进表面涂层的设计,这些涂层可以阻止结构的间接接触传播,并延长结构的使用寿命。为了远程让公众了解聚合物材料的重要性,将开发一系列每月YouTube视频,传达聚合物材料对健康和安全的关键作用,重点介绍医疗保健和生物医学应用材料的发展。这笔赠款是使用分配给MPS.的冠状病毒援助、救济和经济安全(CARE)法案补充条款提供的资金发放的。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SARS‐CoV ‐2 spike protein capture by peptide functionalized networks
  • DOI:
    10.1002/pol.20220539
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    M. Rahman;Chamoni W. H. Rajawasam;Nethmi De Alwis Watuthanthrige;J. L. Sparks;R. Page;Dominik Konkolewicz-Dominik-Konkol
  • 通讯作者:
    M. Rahman;Chamoni W. H. Rajawasam;Nethmi De Alwis Watuthanthrige;J. L. Sparks;R. Page;Dominik Konkolewicz-Dominik-Konkol
Network polymers incorporating lipid-bilayer disrupting polymers: towards antiviral functionality
结合脂质双层破坏聚合物的网络聚合物:实现抗病毒功能
  • DOI:
    10.1039/d2py00602b
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Burridge, Kevin M.;Rahman, Monica S.;De Alwis Watuthanthrige, Nethmi;Gordon, Emma;Shah, Muhammad Zeeshan;Chandrarathne, Bhagya Madhushani;Lorigan, Gary A.;Page, Richard C.;Konkolewicz, Dominik
  • 通讯作者:
    Konkolewicz, Dominik
Simple polymerization through oxygen at reduced volumes using oil and water
  • DOI:
    10.1002/pol.20210386
  • 发表时间:
    2021-06-21
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Burridge, Kevin M.;Watuthanthrige, Nethmi De Alwis;Konkolewicz, Dominik
  • 通讯作者:
    Konkolewicz, Dominik
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dominik Konkolewicz其他文献

Obtaining kinetic information from the chain-length distribution of polymers produced by RAFT.
从 RAFT 生产的聚合物的链长分布中获取动力学信息。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Dominik Konkolewicz;Meiliana Siauw;Angus A Gray;Brian S. Hawkett;S. Perrier
  • 通讯作者:
    S. Perrier
Approaches for Conjugating Tailor-Made Polymers to Proteins.
将定制聚合物与蛋白质缀合的方法。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Paeth;Jacob Stapleton;M. L. Dougherty;Henry Fischesser;Jerry T Shepherd;M. McCauley;Rebecca M Falatach;R. Page;J. Berberich;Dominik Konkolewicz
  • 通讯作者:
    Dominik Konkolewicz
16. Styrene-maleic acid copolymers: a new tool for membrane biophysics
16.苯乙烯-马来酸共聚物:膜生物物理学的新工具
Tuning polymer properties through competitive processes
通过竞争性工艺调整聚合物性能
  • DOI:
    10.1021/bk-2012-1100.ch010
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dominik Konkolewicz;Dagmar R. D’hooge;K. Sosnowski;R. Szymanski;M. Reyniers;G. Marin;K. Matyjaszewski
  • 通讯作者:
    K. Matyjaszewski
Efficient coupling by oxygen accelerated photocatalyzed thiol-alkyne chemistry
通过氧加速光催化硫醇-炔化学进行有效偶联
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    M. Allegrezza;A. M. Thompson;Alex J. Kloster;Dominik Konkolewicz
  • 通讯作者:
    Dominik Konkolewicz

Dominik Konkolewicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dominik Konkolewicz', 18)}}的其他基金

CAS: Responsive Macromolecules by Wavelength Controlled Vinyl Ketone Photopolymerization and Photodegradation
CAS:波长控制乙烯基酮光聚合和光降解响应大分子
  • 批准号:
    2203727
  • 财政年份:
    2022
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Standard Grant
2019 Chemistry Early Career Investigator Workshop
2019年化学早期职业研究员研讨会
  • 批准号:
    1912099
  • 财政年份:
    2018
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Standard Grant
CAREER: Dynamic Polymer Materials with Advanced Polymer Architecture and Carbon Nanotube Reinforcements
职业:具有先进聚合物结构和碳纳米管增强材料的动态聚合物材料
  • 批准号:
    1749730
  • 财政年份:
    2018
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Continuing Grant

相似国自然基金

大豆MYB(v-myb avian myeloblastosis viral oncogene homolog)转录因子基因对大豆异黄酮合成调控的研究
  • 批准号:
    31371641
  • 批准年份:
    2013
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

PFI-TT: Developing an integrated platform for high accuracy measurements of viral particle count and infectious titer
PFI-TT:开发用于高精度测量病毒颗粒计数和感染滴度的集成平台
  • 批准号:
    2141135
  • 财政年份:
    2022
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Standard Grant
A Feasibility Study of a High-Throughput Live-Cell Microscopy Design for Visualizing Viral Particle Action and Nano-Carrier Delivery Performance
用于可视化病毒颗粒作用和纳米载体传递性能的高通量活细胞显微镜设计的可行性研究
  • 批准号:
    10193517
  • 财政年份:
    2021
  • 资助金额:
    $ 18.18万
  • 项目类别:
Development of novel oligonucleotide therapy for malignant meningioma using inactivated viral particle
使用灭活病毒颗粒开发新型寡核苷酸疗法治疗恶性脑膜瘤
  • 批准号:
    21K09170
  • 财政年份:
    2021
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nanotrap particle viral enrichment technology for enabling portal, next-generation sequencing-based surveillance
Nanotrap 颗粒病毒富集技术可实现门户、下一代基于测序的监测
  • 批准号:
    10081086
  • 财政年份:
    2020
  • 资助金额:
    $ 18.18万
  • 项目类别:
Mapping the assembly pathways for viral capsids by direct single-particle measurements
通过直接单颗粒测量绘制病毒衣壳的组装途径
  • 批准号:
    10401944
  • 财政年份:
    2019
  • 资助金额:
    $ 18.18万
  • 项目类别:
Mapping the assembly pathways for viral capsids by direct single-particle measurements
通过直接单颗粒测量绘制病毒衣壳的组装途径
  • 批准号:
    10359241
  • 财政年份:
    2019
  • 资助金额:
    $ 18.18万
  • 项目类别:
Mapping the assembly pathways for viral capsids by direct single-particle measurements
通过直接单颗粒测量绘制病毒衣壳的组装途径
  • 批准号:
    10611432
  • 财政年份:
    2019
  • 资助金额:
    $ 18.18万
  • 项目类别:
An urgently needed low-cost, rapidly deployable platform for simultaneous SARS-CoV-2 viral particle and COVID-19 IgG/IgM detection and quantification
迫切需要一个低成本、可快速部署的平台,用于同时检测和定量 SARS-CoV-2 病毒颗粒和 COVID-19 IgG/IgM
  • 批准号:
    10172022
  • 财政年份:
    2019
  • 资助金额:
    $ 18.18万
  • 项目类别:
Development of multifaceted immunotherapy for glioma using inactivated viral particle
使用灭活病毒颗粒开发神经胶质瘤多方面免疫疗法
  • 批准号:
    18K08988
  • 财政年份:
    2018
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of novel nucleic acid therapy for brain tumor stem cells using inactivated viral particle
使用灭活病毒颗粒开发针对脑肿瘤干细胞的新型核酸疗法
  • 批准号:
    15K19948
  • 财政年份:
    2015
  • 资助金额:
    $ 18.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了