A Feasibility Study of a High-Throughput Live-Cell Microscopy Design for Visualizing Viral Particle Action and Nano-Carrier Delivery Performance
用于可视化病毒颗粒作用和纳米载体传递性能的高通量活细胞显微镜设计的可行性研究
基本信息
- 批准号:10193517
- 负责人:
- 金额:$ 36.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlpha ParticlesAreaBasic ScienceBehaviorBenchmarkingBiochemicalBiologicalCapsidCell surfaceCellsCommunitiesComputational algorithmComputer AssistedComputer softwareComputersCouplingDataData SetDetectionDevelopmentDiffuseDrug Delivery SystemsEndosomesEventExhibitsFeasibility StudiesGenetic MaterialsGoalsHumanImageIndividualInvadedKnowledgeLaboratoriesLaser Scanning MicroscopyLasersLocationMachine LearningMeasuresMethodsMicroscopeMicroscopyMicrotubulesMonitorMotionMutationOpticsPerformanceResearch PersonnelResolutionSamplingScanningShapesSupervisionTestingTherapeuticThree-Dimensional ImagingTimeTrainingTranslational ResearchViralVirusVirus-like particleVisualizationbasedata acquisitiondata streamsdesignexperimental studyfeasibility testingimaging modalityimaging platforminsightinstrumentationinterestlive cell microscopynanocarriernanoparticleneural networkoptical imagingparticlepractical applicationprogenitorprototypespatiotemporalstatisticstooltraittwo-photonvirology
项目摘要
Project Summary/Abstract
Decades of basic research have afforded a general picture for how a viral particle may approach a cell, be
internalized by the cell, and hijack the cell to produce more progenitors. The accumulated knowledge, in turn,
has allowed one to formulate specific mechanistic questions. For instance, why would a particular mutation in a
virus make it more effective in infecting a live cell? Is it because the mutation makes the virus stay on the cell
surface longer (on time) but exhibiting the same cell-internalization propensity, or is it because the mutation
makes it easier for the virus to invade the cell while the off time remains the same? Where inside a cell and when
does a viral particle escape an endosomal enclosure and/or shed its capsid to release its genetic material? By
analogy, similar questions can be formulated in designing nanoparticle-based drug delivery vessels. Many
ingenious experiments using a diverse array of biochemical and biological tools have been devised to address
them, and the insights have led to translational research that has direct therapeutic impacts. A direct observation
and recording of these dynamical events that a viral particle may exhibit in its cell-invasion and multiplication
cycle could potentially offer much more. Recently, our laboratory put forward a proof-of-principle imaging platform
that allows one to do just that: While an integrated two-photon laser-scanning microscope continuously provides
3D sections of the environmental context of a moving virus-like nanoparticle, the nanoparticle is tracked in 3D.
This is performed by moving the sample in order to keep the particle at the center of a microscope objective
focus with a super-resolution localization precision (~10 nm) in all three dimensions and at a 10-microsecond
time resolution. Even for events as simple as a virus-like nanoparticle approaching and landing on a cell, this
prototype multiresolution microscope has allowed us to uncover that, unexpectedly, a virus-like particle tends to
slow down significantly before its landing on a cell surface. While the prototype instrumentation demonstrates
that direct 3D high-resolution visualization could indeed provide uniquely new information that has been
inaccessible using conventional methods, its trajectory throughput is too low to be of widespread practical use.
This developmental project is intended to test whether a new microscopy design would make this approach
higher throughput. This is to be achieved by a new instrumentation design and a machine learning computational
backend for dynamic content filtering. Quantitative measures for benchmarking and feasibility testing are also
described. If feasible, the community would have a completely new and practical way of looking at viral particle
actions and nano-carrier delivery performances.
项目总结/摘要
几十年的基础研究已经为病毒颗粒如何接近细胞提供了一个总体图景,
被细胞内化,并劫持细胞产生更多的祖细胞。积累的知识,反过来,
让我们可以提出具体的机械问题例如,为什么一个特定的突变在一个
使其更有效地感染活细胞?是因为变异使病毒停留在细胞上吗
表面更长(时间),但表现出相同的细胞内化倾向,或者是因为突变
使病毒更容易侵入细胞而关闭时间保持不变?在细胞内的位置和时间
病毒颗粒是否逃离内体外壳和/或脱落其衣壳以释放其遗传物质?通过
类似地,类似的问题可以在设计基于纳米颗粒的药物递送容器中被公式化。许多
已经设计出使用各种生物化学和生物学工具的巧妙实验,
他们,和见解导致了转化研究,有直接的治疗影响。直接观察
并记录病毒颗粒在其细胞侵入和增殖中可能表现出的这些动态事件
循环可以提供更多。最近,我们的实验室提出了一个原理验证成像平台
这使得人们可以做到这一点:而集成的双光子激光扫描显微镜不断提供
移动的病毒样纳米颗粒的环境背景的3D部分,纳米颗粒在3D中被跟踪。
这是通过移动样品以保持颗粒在显微镜物镜的中心来执行的
在所有三个维度上以10微秒的超分辨率定位精度(~10 nm)聚焦
时间分辨率即使是像病毒样纳米粒子接近并降落在细胞上这样简单的事件,
原型多分辨率显微镜使我们能够发现,出乎意料的是,病毒样颗粒往往
在到达细胞表面之前会显著减慢。虽然原型仪器展示了
直接3D高分辨率可视化确实可以提供独特的新信息,
使用常规方法无法实现,其轨迹吞吐量太低而不能广泛实际使用。
这个发展项目的目的是测试是否一个新的显微镜设计将使这种方法
更高的吞吐量。这将通过新的仪器设计和机器学习计算来实现。
用于动态内容过滤的后端。基准测试和可行性测试的量化措施也
介绍了如果可行的话,社会将有一个全新的和实际的方式来看待病毒颗粒
作用和纳米载体递送性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haw Yang其他文献
Haw Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Research Grant