RAPID: Algorithms and Heuristics for Remote Food Delivery under Social Distancing Constraints

RAPID:社交距离约束下远程食品配送的算法和启发式

基本信息

  • 批准号:
    2032262
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This goal of this project is to optimize processes for remote delivery of meals to persons in need. The COVID-19 pandemic has fundamentally disrupted processes of food delivery to economically depressed and vulnerable segments of the US population. With the closing of schools and the advent of social distancing practices, over 13 million low-income students who have historically relied on their school to provide daily meals are now without important nutritional support, and centralized school summer meal distribution programs are no longer viable. Similarly, low-income adults and seniors that depend on centralized distribution of meals at shelters and food banks are now being forced to cope with virus mitigation procedures that severely limit their access. Both short and long term solutions to food security for all in this new normal depend on greater reliance on remote food delivery, and although vehicle routing and pickup/delivery problems have been studied for close to 50 years, the constraints imposed by contemporary public health and social distancing concerns present new optimization challenges. This research will contribute new problem formulations and solutions to these important classes of remote food delivery problems, and through existing relationships with the Allegheny County Department of Human Services, Southwestern Pennsylvania United Way, Allies for Children and the Greater Pittsburgh Food Bank, the project will apply research results to inform their ongoing pilot food delivery efforts. More broadly, these results will stimulate future research on these problems and influence remote food delivery problems nationwide.To realize these results and impact, this project aims to develop new algorithms and heuristics that address the unique constraints and objectives presented by these geographically-dispersed food delivery problems, to provide a theoretical basis for more efficient operational practice. With respect to school bus student meal delivery, algorithms and heuristics for solving several problems will be developed and analyzed. First, the project will consider the coupled problem of assigning stops to students requiring meals and generating efficient routes to accommodate these students within a global meal time window, while enforcing social distance constraints on number of students that can be assigned to any one bus stop. Second, the research will investigate an extended formulation that additionally allows the use of smaller passenger vehicles or vans, to better service students that have difficult access to bus stops and/or long walk times. To ensure relevance, the project will utilize demand and bus route data from selected school districts in Allegheny County, PA to evaluate performance. Finally, with respect to remote distribution of food to low-income seniors, the algorithms and heuristics developed for student meal delivery will be extended and adapted to this more capacity constrained setting, where food must be moved exclusively in smaller volunteer passenger vehicles. Data obtained from the Greater Food Bank of Pittsburgh will be used to evaluate these extended research results. All data sets used and solutions results obtained will be made available to stimulate future research in this area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是优化向有需要的人远程送餐的程序。COVID-19疫情从根本上扰乱了向美国经济低迷和弱势群体提供食品的过程。随着学校关闭和社交距离做法的出现,超过1300万低收入家庭的学生过去依靠学校提供每日膳食,现在没有重要的营养支持,集中的学校夏季膳食分配计划不再可行。同样,依赖收容所和粮食银行集中分配膳食的低收入成年人和老年人现在被迫科普严重限制其获得的病毒缓解程序。在这种新常态下,所有人的粮食安全的短期和长期解决方案都依赖于对远程食品配送的更多依赖,尽管车辆路线和接送问题已经研究了近50年,但当代公共卫生和社会距离问题带来的限制提出了新的优化挑战。这项研究将有助于新的问题配方和解决方案,这些远程食品配送问题的重要类,并通过与人类服务的阿勒格尼县部门,宾夕法尼亚州西南部联合之路,儿童联盟和大匹兹堡食品银行现有的关系,该项目将应用研究成果,以告知他们正在进行的试点食品配送工作。更广泛地说,这些结果将刺激未来对这些问题的研究,并影响全国范围内的远程食品配送问题。为了实现这些结果和影响,本项目旨在开发新的算法和算法,以解决这些地理分散的食品配送问题所带来的独特约束和目标,为更有效的操作实践提供理论基础。关于校车学生送餐,算法和算法解决几个问题将被开发和分析。首先,该项目将考虑分配站的学生需要吃饭,并产生有效的路线,以适应这些学生在全球用餐时间窗口的耦合问题,同时执行社会距离的限制,可以分配到任何一个巴士站的学生人数。其次,研究将调查一种扩展的配方,该配方还允许使用较小的客车或货车,以更好地为难以到达公交车站和/或步行时间较长的学生提供服务。为确保相关性,该项目将利用来自宾夕法尼亚州阿勒格尼县选定学区的需求和公交线路数据来评估绩效。最后,关于向低收入老年人远程分发食物的问题,为学生送餐开发的算法和物流将得到扩展,并适应这种容量更有限的环境,在这种环境下,食物必须专门用较小的志愿者客运车辆运送。从匹兹堡大粮食银行获得的数据将用于评估这些扩展的研究结果。所有使用的数据集和获得的解决方案结果都将用于激励该领域的未来研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Smith其他文献

Highway Corridor Transformation Research Study - Proof of Concept
公路走廊改造研究 - 概念验证
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Donald Carter;Stephen Quick;Stephen Smith;C. Mondor;P. Folan
  • 通讯作者:
    P. Folan
Online Video Teletherapy Treatment of Obsessive-Compulsive Disorder Using Exposure and Response Prevention: Clinical Outcomes From a Retrospective Longitudinal Observational Study
使用暴露和反应预防的在线视频远程治疗治疗强迫症:回顾性纵向观察研究的临床结果
  • DOI:
    10.2196/preprints.36431
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jamie D. Feusner;Nicholas R. Farrell;Jeremy Kreyling;P. McGrath;A. Rhode;T. Faneuff;S. Lonsway;R. Mohideen;J. Jurich;L. Trusky;Stephen Smith
  • 通讯作者:
    Stephen Smith
Safe Schools, Positive Behavior Supports, and Mental Health Supports
安全学校、积极行为支持和心理健康支持
  • DOI:
    10.1300/j202v06n02_06
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    J. Sprague;Vicki M. Nishioka;Stephen Smith
  • 通讯作者:
    Stephen Smith
COMMISSIONING AND PERFORMANCE OF LCLS CAVITY BPMS
LCLS 腔 BPMS 的调试和性能
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Smith;S. Hoobler;Ronald G. Johnson;T. Straumann;A. Young;A. U.S;R. Lill;L. Morrison;E. Norum;N. Sereno;G. Waldschmidt;Dean;Walters
  • 通讯作者:
    Walters
‘A lot more to learn than where babies come from’: controversy, language and agenda setting in the framing of school-based sexuality education curricula in Australia
“需要学习的东西比婴儿从哪里来的多得多”:澳大利亚学校性教育课程框架中的争议、语言和议程设置
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barrie Shannon;Stephen Smith
  • 通讯作者:
    Stephen Smith

Stephen Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Smith', 18)}}的其他基金

Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
IntBIO COLLABORATIVE RESEARCH: Integrating fossils, genomics, and machine learning to reveal drivers of Cretaceous innovations in flowering plants
IntBIO 协作研究:整合化石、基因组学和机器学习,揭示白垩纪开花植物创新的驱动因素
  • 批准号:
    2217116
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: BEE: Bridging the ecology and evolution of East African Acacias across time and space: genomics, ecosystem, and diversification
合作研究:BEE:跨越时间和空间连接东非金合欢的生态和进化:基因组学、生态系统和多样化
  • 批准号:
    2106070
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
NSFDEB-NERC: Collaborative research: Plant chemistry and its impact on diversification and habitat of plants adapted to extreme environments
NSFDEB-NERC:合作研究:植物化学及其对适应极端环境的植物多样化和栖息地的影响
  • 批准号:
    1938969
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CIBR: Collaborative Research: Integrating data communities with BiotaPhy: a computational platform for data-intensive biodiversity research and training
CIBR:协作研究:将数据社区与 BiotaPhy 相集成:用于数据密集型生物多样性研究和培训的计算平台
  • 批准号:
    1930030
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Temperate radiations and tropical dominance: the diversification and evolution of the plant clade Ericales
合作研究:温带辐射和热带优势:植物分支杜鹃花目的多样化和进化
  • 批准号:
    1917146
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Computational Analysis of Transcription and Alternative Splicing Events in Squamous Cell Cancer.
鳞状细胞癌转录和选择性剪接事件的计算分析。
  • 批准号:
    MR/R001146/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
IIS-RI: ICAPS 2016 Doctoral Consortium Travel Awards
IIS-RI:ICAPS 2016 博士联盟旅行奖
  • 批准号:
    1630144
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: School Segregation and Resegregation: Using Case Studies and Public Polls to Understand Citizen Attitudes
合作研究:学校隔离和重新隔离:利用案例研究和公众民意调查来了解公民的态度
  • 批准号:
    1527762
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Connecting resources to enable large-scale biodiversity analyses.
合作研究:ABI 创新:连接资源以实现大规模生物多样性分析。
  • 批准号:
    1458466
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
  • 批准号:
    RGPIN-2014-04868
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
  • 批准号:
    RGPIN-2014-03901
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced algorithms and heuristics for solving quantified mixed - integer linear programs
用于求解量化混合整数线性程序的高级算法和启发式方法
  • 批准号:
    399489083
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grants
Soft-Clustering - From Heuristics To Approximation Algorithms
软聚类 - 从启发式到近似算法
  • 批准号:
    324506751
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grants
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
  • 批准号:
    RGPIN-2014-03901
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
  • 批准号:
    RGPIN-2014-04868
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
  • 批准号:
    RGPIN-2014-04868
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
  • 批准号:
    RGPIN-2014-03901
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Solving Location Problems by Heuristics and Exact Algorithms
通过启发式和精确算法解决定位问题
  • 批准号:
    RGPIN-2014-04868
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
  • 批准号:
    RGPIN-2014-03901
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了