RAPID - COVID-19 target epitopes and human genetic factors of virulence

RAPID - COVID-19 靶标表位和人类遗传毒力因素

基本信息

  • 批准号:
    2032904
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

This RAPID award will develop new computational tools for SARS-CoV-2 research that bring to bear on COVID-19 a massive amount of evolutionary data on variations and (often neglected) divergences through algorithms that embody basic concepts of evolution, physics, and machine learning. The project will develop, benchmark and disseminate tools that perform deep mutational scanning of every CoV2 protein entirely in silico. A computational analysis of sequence, structure and function across the Coronavirus family will yield the discovery of functional epitopes across the CoV2 proteome and on weighing the functional impact of new mutations in emerging CoV2 strains. The outcome will be to comprehensively map all actionable targets in CoV2 that may then serve, for example, as antigens for pan-Coronavirus vaccines or as docking sites for repurposed drugs. A machine learning search for human host genetic factors that may distinguish between asymptomatic to mild COVID-19 infections from severe to lethal infections will help identify and disseminate human host biomarkers of mortality that personalize preventive measures and treatment modalities, tailored to individual genetic risks. The project applies an Evolutionary Action theory that takes an integrative mathematical physics approach to the couplings between sequence variations, protein structure-function and evolutionary divergences. This approach involves computing the evolutionary forces that shaped fitness landscapes, and assessing the energy expended by mutations against these forces as they traverse these landscapes. While most natural mutations exert low energy and little or no impact on function or evolution, a few mutations carry significant energy and reliably change function and fitness. Preliminary data, including on SARS-CoV-2, show that this approach will yield precise and tunable maps of protein functional epitopes and accurate scores of the impact of mutations on function. As a training feature, it will provide a singularly accurate measure of the functional impact of each mutation for machine learning to find which genes are diferentially affected in a group of carriers of a complex phenotype vs a control group. Because EA is based on fundamental principles of evolution and protein structure-function, it is entirely general and the computational techniques we propose can be deployed to study any virus, bacterium, or eukaryotic system and their interactions. This will lead to broad new insights into the genotype-phenotype relationship, equally useful to research, education, and biotechnology development across all kingdoms of life. This RAPID award is made by the Division of Biological Infrastructure using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 RAPID 奖项将为 SARS-CoV-2 研究开发新的计算工具,通过体现进化、物理学和机器学习基本概念的算法,为 COVID-19 带来大量有关变异和(经常被忽视)分歧的进化数据。该项目将开发、基准测试和传播工具,完全在计算机中对每种 CoV2 蛋白进行深度突变扫描。对整个冠状病毒家族的序列、结构和功能的计算分析将发现整个 CoV2 蛋白质组的功能表位,并权衡新出现的 CoV2 毒株中新突变的功能影响。结果将是全面绘制 CoV2 中所有可操作靶标的图谱,这些靶标随后可以用作泛冠状病毒疫苗的抗原或重新利用药物的对接位点。机器学习搜索人类宿主遗传因素,可以区分无症状到轻度的COVID-19感染和严重到致命的感染,将有助于识别和传播人类宿主死亡生物标志物,从而根据个人遗传风险制定个性化的预防措施和治疗方式。 该项目应用了进化作用理论,该理论采用综合数学物理方法来研究序列变异、蛋白质结构功能和进化分歧之间的耦合。这种方法涉及计算塑造适应性景观的进化力量,并评估突变在穿越这些景观时对抗这些力量所消耗的能量。虽然大多数自然突变产生的能量较低,对功能或进化影响很小或没有影响,但少数突变携带显着的能量并可靠地改变功能和适应性。包括 SARS-CoV-2 在内的初步数据表明,这种方法将产生精确且可调节的蛋白质功能表位图谱,以及突变对功能影响的准确评分。作为一项训练功能,它将为机器学习提供每个突变的功能影响的极其准确的测量,以找出哪些基因在复杂表型的携带者组与对照组中受到不同的影响。 因为 EA 基于进化和蛋白质结构功能的基本原理,所以它是完全通用的,我们提出的计算技术可以用于研究任何病毒、细菌或真核系统及其相互作用。这将为基因型与表型关系带来广泛的新见解,对于所有生命领域的研究、教育和生物技术发展同样有用。该 RAPID 奖项由生物基础设施部门使用《冠状病毒援助、救济和经济安全 (CARES) 法案》的资金颁发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivier Lichtarge其他文献

Some model experiments in hemodynamics: VI. Two-body collisions between blood cells.
血流动力学的一些模型实验:VI.
  • DOI:
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Harry L. Goldsmith;Olivier Lichtarge;M. Tessier;S. Spain
  • 通讯作者:
    S. Spain
Evaluating predictors of kinase activity of STK11 variants identified in primary human non-small cell lung cancers
  • DOI:
    10.1007/s00439-025-02726-0
  • 发表时间:
    2025-02-12
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Yile Chen;Kyoungyeul Lee;Junwoo Woo;Dong-wook Kim;Changwon Keum;Giulia Babbi;Rita Casadio;Pier Luigi Martelli;Castrense Savojardo;Matteo Manfredi;Yang Shen;Yuanfei Sun;Panagiotis Katsonis;Olivier Lichtarge;Vikas Pejaver;David J. Seward;Akash Kamandula;Constantina Bakolitsa;Steven E. Brenner;Predrag Radivojac;Anne O’Donnell-Luria;Sean D. Mooney;Shantanu Jain
  • 通讯作者:
    Shantanu Jain
114 Expanding clinical spectrum of RRM2B mutations to include MNGIE
  • DOI:
    10.1016/j.mito.2009.12.106
  • 发表时间:
    2010-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lee-Jun Wong;Aziz Shaibani;Oleg A. Shchelochkov;Shulin Zhang;Panagiotis Katsonis;Olivier Lichtarge;Marwan Shinawi
  • 通讯作者:
    Marwan Shinawi
CAGI6 ID panel challenge: assessment of phenotype and variant predictions in 415 children with neurodevelopmental disorders (NDDs)
  • DOI:
    10.1007/s00439-024-02722-w
  • 发表时间:
    2025-01-09
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Maria Cristina Aspromonte;Alessio Del Conte;Shaowen Zhu;Wuwei Tan;Yang Shen;Yexian Zhang;Qi Li;Maggie Haitian Wang;Giulia Babbi;Samuele Bovo;Pier Luigi Martelli;Rita Casadio;Azza Althagafi;Sumyyah Toonsi;Maxat Kulmanov;Robert Hoehndorf;Panagiotis Katsonis;Amanda Williams;Olivier Lichtarge;Su Xian;Wesley Surento;Vikas Pejaver;Sean D. Mooney;Uma Sunderam;Rajgopal Srinivasan;Alessandra Murgia;Damiano Piovesan;Silvio C. E. Tosatto;Emanuela Leonardi
  • 通讯作者:
    Emanuela Leonardi
Assessing the predicted impact of single amino acid substitutions in calmodulin for CAGI6 challenges
  • DOI:
    10.1007/s00439-024-02720-y
  • 发表时间:
    2024-12-23
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Paola Turina;Giuditta Dal Cortivo;Carlos A. Enriquez Sandoval;Emil Alexov;David B. Ascher;Giulia Babbi;Constantina Bakolitsa;Rita Casadio;Piero Fariselli;Lukas Folkman;Akash Kamandula;Panagiotis Katsonis;Dong Li;Olivier Lichtarge;Pier Luigi Martelli;Shailesh Kumar Panday;Douglas E. V. Pires;Stephanie Portelli;Fabrizio Pucci;Carlos H. M. Rodrigues;Marianne Rooman;Castrense Savojardo;Martin Schwersensky;Yang Shen;Alexey V. Strokach;Yuanfei Sun;Junwoo Woo;Predrag Radivojac;Steven E. Brenner;Daniele Dell’Orco;Emidio Capriotti
  • 通讯作者:
    Emidio Capriotti

Olivier Lichtarge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivier Lichtarge', 18)}}的其他基金

ABI Innovation: Towards Recovery of Biological Information
ABI Innovation:迈向生物信息恢复
  • 批准号:
    1356569
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
ABI Innovation: Tunable Perturbation of Proteins and Pathways
ABI 创新:蛋白质和通路的可调节扰动
  • 批准号:
    1062455
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Data Flow across Heterogenous and Frustrated Protein Networks
跨异质和受挫蛋白质网络的数据流
  • 批准号:
    0905536
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Automated Annotation of Function in Protein Structures from Evolutionary-based 3D-Templates
根据基于进化的 3D 模板自动注释蛋白质结构中的功能
  • 批准号:
    0547695
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Cluster Computer for Digital Biology
MRI:购买用于数字生物学的集群计算机
  • 批准号:
    0420984
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Algorithms for the Discovery and Geometric-Matching of Hierarchical 3-D Templates of Functional Sites in Protein Structures
蛋白质结构中功能位点分层 3D 模板的发现和几何匹配算法
  • 批准号:
    0318415
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Development of a Database for the Discovery and Annotation of Functional Sites in Protein Structures
开发用于发现和注释蛋白质结构中功能位点的数据库
  • 批准号:
    0114796
  • 财政年份:
    2001
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

CEACAM5调控Galectin-9介导的CD4+T细胞极化在COVID-19肠屏障损伤的作用机制研究
  • 批准号:
    82370569
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
COVID-19疫情对我国儿童生长发育影响的异质性研究
  • 批准号:
    42371429
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
传染病模型的稳态切换过程研究及其在治疗COVID-19中的应用
  • 批准号:
    LQ23A010016
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
COVID-19中线粒体囊泡抑制CD8+T细胞记忆分化的机制研究
  • 批准号:
    82300018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
COVID-19疫情爆发后武汉地区儿童副流感病毒3型的流行趋势和进化规律研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 GDF15-IL6 信号轴探究扶正解毒方逆转血管内皮衰老治疗COVID-19的作用与机制
  • 批准号:
    82374392
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
多维不平稳和长记忆性的复杂整值时间序列的建模及其在Covid-19研究中的应用
  • 批准号:
    12301358
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
COVID-19疫苗同源、异源加强剂次细胞免疫与体液免疫效应的前瞻性队列研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于人源细胞3D培养和精密肺切片技术探讨慢阻肺患者COVID-19易感机制研究
  • 批准号:
    LY23H190003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Rapid learning during a public health emergency: COVID-19 related medication treatment patterns in Medicare
突发公共卫生事件期间的快速学习:医疗保险中与 COVID-19 相关的药物治疗模式
  • 批准号:
    10711497
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Quantitative Detection of Coronary Microvascular Dysfunction in Long COVID Patients using a Comprehensive, Rapid, Free-Breathing Cardiovascular MRI
使用全面、快速、自由呼吸的心血管 MRI 定量检测长期新冠肺炎患者的冠状动脉微血管功能障碍
  • 批准号:
    10671235
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Rapid diagnosis of COVID-19 and fungal infections using Raman barcodes
使用拉曼条形码快速诊断 COVID-19 和真菌感染
  • 批准号:
    23K09359
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAPID: Retrospective COVID-19 Scenario Projections Accounting for Population Heterogeneities
RAPID:考虑人口异质性的回顾性 COVID-19 情景预测
  • 批准号:
    2333494
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SBIR PA22-176 - RNA aptamers for rapid response to COVID-19 variants
SBIR PA22-176 - 用于快速响应 COVID-19 变体的 RNA 适体
  • 批准号:
    10758405
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
FDA Vet-LIRN Capacity-Building of Ohio ADDL to support rapid testing for COVID-19
FDA Vet-LIRN 俄亥俄州 ADDL 能力建设支持快速检测 COVID-19
  • 批准号:
    10829119
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
RAPID: Collaborative Research: Providing useable COVID-19 health information to linguistically underserved people
RAPID:协作研究:为语言服务不足的人群提供可用的 COVID-19 健康信息
  • 批准号:
    2331607
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Market translation of a rapid aptamer-based COVID-19 saliva test
基于适配体的快速 COVID-19 唾液检测的市场转化
  • 批准号:
    571001-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Idea to Innovation
RAPID: STEM faculty support to address impacts from COVID-19 on Tribal Colleges and Universities Program institutions
RAPID:STEM 教职员工支持解决 COVID-19 对部落学院和大学项目机构的影响
  • 批准号:
    2213457
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了