RAPID: Retrospective COVID-19 Scenario Projections Accounting for Population Heterogeneities
RAPID:考虑人口异质性的回顾性 COVID-19 情景预测
基本信息
- 批准号:2333494
- 负责人:
- 金额:$ 19.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-term burden of COVID-19 may vary across races and ethnicities. To address this variaiton this project will extend a current model to account for race and ethnicity. The availability of outcomes and vaccine uptake data by race/ethnicity in the US creates an opportunity to explicitly model these variables across the groups and evaluate the results from real-world data. The project will help us understand the inequities of COVID-19 outcomes and vaccination uptake and prepare the US for the future of COVID-19 and other outbreaks. The project has the potential to be applicable wherever relevant data on ethnicity and race is available, and can be extended to other types of groups. The project will integrate the lessons learned in an undergraduate course on programming and a graduate-level class on Machine Learning for health. The project will also provide research opportunities through a senior capstone program and minority-serving programs such as the USC JumpStart program and the Viterbi Summer Institute.The proposed project will integrate data on race and ethnicity along with various other datasets to account for population health. The key innovation in the integration is the ability to learn contact matrices from data. The project will use a novel approach, where the n×n contact matrix is generated by n hidden parameters that indicate the likelihood of contact of a group with a randomly selected individual. The learned contact matrix will be integrated with an epidemiological model currently being used by the PI in the US Scenario Modeling Hub to generate long-term projections of cases, deaths, and hospitalization. The appoach will compare learning contact matrices with other approaches that derive those matrices from survey data and high-resolution mobility data. The new approach will enable the modeling of sub-population interactions when such mobility data is not available. The model will be evaluated with ground truth data observed over the last three years in collaboration with the COVID-19 Scenario Modeling Hub.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19的长期负担可能因种族和族裔而异。为了解决这一变化,该项目将扩展当前的模型,以考虑种族和民族。在美国,按种族/民族划分的结果和疫苗摄取数据的可用性创造了一个机会,可以明确地对这些变量进行跨组建模,并评估来自现实世界数据的结果。该项目将帮助我们了解COVID-19结果和疫苗接种的不公平现象,并帮助美国为未来的COVID-19和其他疫情做好准备。只要有有关族裔和种族的数据,该项目就有可能适用,并可扩展到其他类型的群体。该项目将整合本科编程课程和研究生健康机器学习课程的经验教训。该项目还将通过一个高级顶点项目和少数族裔服务项目(如南加州大学JumpStart项目和维特比暑期学院)提供研究机会。拟议的项目将整合关于种族和族裔的数据以及各种其他数据集,以说明人口健康。集成的关键创新是能够从数据中学习接触矩阵。该项目将使用一种新颖的方法,其中n×n接触矩阵由n个隐藏参数生成,这些参数表示一个群体与随机选择的个体接触的可能性。所学接触矩阵将与PI目前在美国情景建模中心使用的流行病学模型相结合,以生成病例、死亡和住院的长期预测。该方法将学习接触矩阵与从调查数据和高分辨率移动数据中导出这些矩阵的其他方法进行比较。新方法将使亚种群的相互作用建模时,这种流动性数据是不可用的。该模型将与COVID-19情景建模中心合作,利用过去三年观测到的真实数据进行评估。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ajitesh Srivastava其他文献
Computational models of technology adoption at the workplace
工作场所技术采用的计算模型
- DOI:
10.1007/s13278-014-0199-z - 发表时间:
2014 - 期刊:
- 影响因子:2.8
- 作者:
C. Chelmis;Ajitesh Srivastava;V. Prasanna - 通讯作者:
V. Prasanna
DTW+S: Shape-based Comparison of Time-series with Ordered Local Trend
DTW S:基于形状的时间序列与有序局部趋势的比较
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ajitesh Srivastava - 通讯作者:
Ajitesh Srivastava
Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic
学习预测并通过预测从 COVID-19 大流行中吸取教训
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ajitesh Srivastava;V. Prasanna - 通讯作者:
V. Prasanna
Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction
迈向高性能、便携性和生产力:用于性能预测的轻量级增强神经网络
- DOI:
10.1109/hipc50609.2020.00016 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ajitesh Srivastava;Naifeng Zhang;R. Kannan;V. Prasanna - 通讯作者:
V. Prasanna
Rapid Data Integration and Analysis for Upstream Oil and Gas Applications
上游石油和天然气应用的快速数据集成和分析
- DOI:
10.2118/174907-ms - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
C. Cheung;Palash Goyal;G. Harris;O. Patri;Ajitesh Srivastava;Yinuo Zhang;A. Panangadan;C. Chelmis;Randall G. Mckee;Monique Theron;Tamás Németh;V. Prasanna - 通讯作者:
V. Prasanna
Ajitesh Srivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ajitesh Srivastava', 18)}}的其他基金
RAPID: Data-driven Understanding of Imperfect Protection for Long-term COVID-19 Projections
RAPID:数据驱动的对长期 COVID-19 预测不完美保护的理解
- 批准号:
2223933 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
RAPID: Fast COVID-19 Scenario Projections in Presence of Vaccines and Competing Variants
RAPID:在存在疫苗和竞争变种的情况下快速进行 COVID-19 情景预测
- 批准号:
2135784 - 财政年份:2021
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
相似海外基金
Investigating the efficacy and safety profiles of Bimekizumab in treating moderate-to-severe plaque psoriasis: A Canadian retrospective study
调查 Bimekizumab 治疗中重度斑块状银屑病的疗效和安全性:加拿大回顾性研究
- 批准号:
484723 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Studentship Programs
Impact of prenatal exposure to climate stressors and severe maternal morbidity: a retrospective birth cohort study
产前暴露于气候压力源和严重孕产妇发病率的影响:一项回顾性出生队列研究
- 批准号:
10648271 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Multiplexing working memory and timing: Encoding retrospective and prospective information in transient neural trajectories.
复用工作记忆和计时:在瞬态神经轨迹中编码回顾性和前瞻性信息。
- 批准号:
10841182 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Retrospective prognostic analysis based on molecular information of malignant glioma and malignant meningioma treated with BNCT
基于BNCT治疗恶性胶质瘤和恶性脑膜瘤分子信息的回顾性预后分析
- 批准号:
23K19519 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Tail-hair cortisol and stable isotopes as a retrospective health calendar of elephants
尾毛皮质醇和稳定同位素作为大象回顾性健康日历
- 批准号:
22KF0202 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Retrospective Single Image Multi-endPoint anaLysis (SIMPL) to define pathophysiologic mechanisms of heart failure with preserved ejection fraction.
回顾性单图像多端点分析 (SIMPL) 定义射血分数保留的心力衰竭的病理生理机制。
- 批准号:
10580172 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Evaluating the real-world impact of Internet-delivered Cognitive Behavioural Therapy (iCBT) through the lens of the RE-AIM framework: a retrospective cohort study in Ontario
通过 RE-AIM 框架的视角评估互联网提供的认知行为治疗 (iCBT) 对现实世界的影响:安大略省的一项回顾性队列研究
- 批准号:
475699 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Studentship Programs
A prospective and retrospective multi-center, cohort study for clinical, virologic and immunologic characterization of monkeypox virus clade IIb by the International Monkeypox Response Consortium (IMREC)
国际猴痘反应联盟 (IMREC) 对猴痘病毒 clade IIb 的临床、病毒学和免疫学特征进行了一项前瞻性和回顾性多中心队列研究
- 批准号:
471094 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Operating Grants
The development of prospective memory in early childhood: Contributions of retrospective memory and executive control processes
儿童早期前瞻性记忆的发展:回顾性记忆和执行控制过程的贡献
- 批准号:
RGPIN-2015-03774 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Discovery Grants Program - Individual
Implementation and dissemination of cloud-based retrospective hemodynamic analysis tools to enhance HCP data interpretation
实施和传播基于云的回顾性血流动力学分析工具,以增强 HCP 数据解释
- 批准号:
10509534 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别: