ECO-CBET: A holistic effort to decarbonize diesel for heavy duty transportation: Targeted combustion & exhaust catalysis research to improve life-cycle performance

ECO-CBET:重型运输柴油脱碳的整体努力:定向燃烧

基本信息

  • 批准号:
    2033675
  • 负责人:
  • 金额:
    $ 170万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Freight is predominantly transported via heavy-duty road vehicles and container shipping vessels. The heavy loads characteristic of each of these transportation modes require high-density fuels sources. That restriction, in combination with the impracticality of recharging batteries aboard marine vessels, will limit the penetration of electric vehicles into these markets for the near term. Therefore, diesel fuel consumption by heavy-duty road vehicle and marine engines is expected to continue to rise. This research project investigates how low greenhouse gas emissions technologies can be used to support this increasing use of diesel fuels. Combustion and catalysis research are combined to understand the impact of fuel composition and combustion strategy on the emissions of greenhouse gases - namely, nitrous oxide, methane, and diesel particulates. In addition, several current diesel fuels, including biorenewable ones, are evaluated to assess various scenarios for reducing the overall global warming potential of diesel-type fuels and the corresponding combustion strategies. The outcomes of this project will contribute to U.S. leadership in clean diesel technology. The project also will provide cross-disciplinary training to graduate and undergraduate students, while emphasizing increased participation by underrepresented minorities in STEM fields at all educational levels.The goal of this research project is to track the chemical relationships between fuel composition, combustion products, and exhaust emissions on the overall global warming potential of heavy-duty diesel-type compression-ignition engines. The research aims include 1) the construction of an optically-accessible reactor to study combustion of vaporized diesel, biodiesel, and surrogate fuels under conditions relevant for low temperature combustion engines; 2) the use of novel, in-situ techniques to measure temperature, hydrocarbon species and particulate formation throughout the combustion reaction zone; 3) the determination of the nitrous oxide formation mechanism over an exhaust oxidation catalyst; and 4) the integration of results via life cycle analysis to evaluate the global warming potential of various diesel and diesel-alternatives. The types of fuels to be evaluated include standard fossil fuel diesel plus three classes of “low carbon” diesel alternatives, namely soy biodiesel (fatty acid methyl esters, FAME), “green diesel” from the thermochemical conversion of waste biomass, and “carbon-neutral hydrocarbon fuels” produced using reclaimed carbon dioxide as feedstock. Using the optically accessible combustion chamber and a new time- and frequency-resolved nonlinear spectroscopy measurement method, species will be measured as a function of the fuel type and combustion mode. Standard diesel engine combustion conditions will be compared with low temperature combustion conditions relevant to homogenous charge compression ignition and premixed-charged compression ignition. The mechanism of nitrous oxide formation over a diesel oxidation catalyst as a function of hydrocarbon type will be derived via experiments and computational modeling. A life cycle analysis will be performed combining the nitrous oxide, methane, particulate and carbon dioxide results for each fuel type, such that an overall perspective of fuel source and combustion mode impact can be evaluated. The outcomes of this research project will allow the community and public policy decision makers to better understand how diesel fuel source and combustion technologies can deliver meaningful reductions in the global warming potential of diesel-type fuels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
货运主要通过重型公路车辆和集装箱运输船运输。 这些运输方式的重载特性都需要高密度燃料源。 这一限制,再加上船上电池充电的不切实际,将在短期内限制电动汽车进入这些市场。 因此,重型道路车辆和船用发动机的柴油消耗量预计将继续上升。该研究项目研究如何使用低温室气体排放技术来支持柴油燃料的不断增加的使用。燃烧和催化研究相结合,了解燃料成分和燃烧策略对温室气体(即一氧化二氮、甲烷和柴油颗粒物)排放的影响。此外,还对当前的几种柴油燃料(包括生物可再生柴油燃料)进行了评估,以评估降低柴油型燃料总体全球变暖潜力的各种情景以及相应的燃烧策略。该项目的成果将有助于美国在清洁柴油技术方面的领导地位。该项目还将为研究生和本科生提供跨学科培训,同时强调提高代表性不足的少数群体在各个教育级别的 STEM 领域的参与度。该研究项目的目标是跟踪燃料成分、燃烧产物和废气排放之间的化学关系与重型柴油型压燃式发动机总体全球变暖潜力的关系。 研究目标包括1)建造一个光学反应堆来研究汽化柴油、生物柴油和替代燃料在低温内燃机相关条件下的燃烧; 2) 使用新颖的现场技术来测量整个燃烧反应区的温度、碳氢化合物种类和颗粒形成; 3) 确定废气氧化催化剂上一氧化二氮的形成机理; 4) 通过生命周期分析整合结果,以评估各种柴油和柴油替代品的全球变暖潜力。待评估的燃料类型包括标准化石燃料柴油加上三类“低碳”柴油替代品,即大豆生物柴油(脂肪酸甲酯,FAME)、废弃生物质热化学转化的“绿色柴油”以及使用回收二氧化碳作为原料生产的“碳中性碳氢化合物燃料”。使用光学可访问的燃烧室和新的时间和频率分辨非线性光谱测量方法,将测量作为燃料类型和燃烧模式的函数的物质。 标准柴油发动机燃烧条件将与均质充量压缩点火和预混合充量压缩点火相关的低温燃烧条件进行比较。柴油氧化催化剂上一氧化二氮形成的机制作为碳氢化合物类型的函数将通过实验和计算模型得出。将结合每种燃料类型的一氧化二氮、甲烷、颗粒物和二氧化碳结果进行生命周期分析,以便可以评估燃料源和燃烧模式影响的整体视角。该研究项目的成果将使社区和公共政策决策者更好地了解柴油燃料来源和燃烧技术如何能够有意义地降低柴油类燃料的全球变暖潜力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Epling其他文献

Adapted CO chemisorption technique to measure metal particle dispersion on ceria-containing catalysts
  • DOI:
    10.1016/j.jcat.2024.115358
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Silvia Marino;Raneen Taha;Yuntao Gu;Wei Li;William Epling
  • 通讯作者:
    William Epling
Reduction of Surface Nitrates via C3H6 Oxidation Over a Pt/Al2O3 Catalyst
  • DOI:
    10.1007/s11244-013-9938-z
  • 发表时间:
    2013-02-26
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Harry Oh;Jinyong Luo;William Epling
  • 通讯作者:
    William Epling

William Epling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Epling', 18)}}的其他基金

NSF-GACR: Atoms to nanoparticles to atoms - predicting evolving catalyst activity under inherently transient conditions
NSF-GACR:原子到纳米粒子到原子 - 预测固有瞬态条件下不断变化的催化剂活性
  • 批准号:
    2227016
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
EFRI DCheM: Precise but Tunable Reactions Through Tunably Precise Surfaces
EFRI DCheM:通过可调节精确表面实现精确但可调节的反应
  • 批准号:
    2029359
  • 财政年份:
    2020
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
NSF/DOE Advanced Combustion Engines - Tailoring Catalyst Composition and Architecture for Conversion of Pollutants from Low Temperature Diesel Combustion Engines
NSF/DOE 先进燃烧发动机 - 定制用于转化低温柴油燃烧发动机污染物的催化剂成分和结构
  • 批准号:
    1258688
  • 财政年份:
    2013
  • 资助金额:
    $ 170万
  • 项目类别:
    Continuing Grant

相似海外基金

CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 170万
  • 项目类别:
    Research Grant
CBET-EPSRC Sustainable bioplastics prepared by ultrasonic treatment with low CO2 footprint
CBET-EPSRC 通过超声波处理制备的可持续生物塑料,二氧化碳足迹低
  • 批准号:
    EP/X039773/1
  • 财政年份:
    2024
  • 资助金额:
    $ 170万
  • 项目类别:
    Research Grant
CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics
CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型
  • 批准号:
    EP/X031640/1
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Research Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318618
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318619
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318617
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Putting entropy to work: Leveraging the role of water organization in peptide binding events to selectively recover rare earths
合作研究:ECO-CBET:让熵发挥作用:利用水组织在肽结合事件中的作用来选择性回收稀土
  • 批准号:
    2346163
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Continuing Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318495
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
ECO-CBET: GOALI: Condensing water from the air for building dehumidification and decarbonization using thermo-responsive desiccants
ECO-CBET:GOALI:使用热敏干燥剂从空气中冷凝水,用于建筑除湿和脱碳
  • 批准号:
    2318720
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
CBET-EPSRC: Direct methane conversion into valuable oxygenates via tandem catalysis
CBET-EPSRC:通过串联催化将甲烷直接转化为有价值的含氧化合物
  • 批准号:
    2302161
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了