NSF/DOE Advanced Combustion Engines - Tailoring Catalyst Composition and Architecture for Conversion of Pollutants from Low Temperature Diesel Combustion Engines
NSF/DOE 先进燃烧发动机 - 定制用于转化低温柴油燃烧发动机污染物的催化剂成分和结构
基本信息
- 批准号:1258688
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT#1258688Epling, WilliamAlthough diesel engines are more fuel efficient than their gasoline counterparts, increases in fuel economy are still needed. Coincidentally, environmental policies now require significant decreases in tailpipe NOx, HC, CO, CO2 and PM emissions from diesel engines. To meet the fuel economy demand, low temperature combustion (LTC) engines have been developed. Although the relatively low temperature of conventional diesel engine exhaust is already a challenge for emissions control, especially during cold start and under idling conditions, low temperature combustion engines have 40 to 70C lower exhaust temperatures which means lower catalyst activity. These advanced combustion engines produce lower NOx and particulate matter (soot) emissions than current diesel engine technologies, but emit higher levels of other pollutants, specifically CO and hydrocarbons (HCs). The lower temperature exhaust combined with higher levels of CO and HCs are especially problematic. As a result, the LTC engine may have better fuel economy, but produce significantly higher emissions, as today?s catalytic converter technology is inefficient at such low temperatures. A solution is clearly a more active catalyst technology. This is simple to state, yet difficult to achieve.A novel approach to achieving catalyst activity control has been proposed in response to the joint National Science Foundation and Department of Energy solicitation on Advanced Combustion Engines. The joint Agency award is made through the NSF Chemical, Bioengineering, Environmental and Transport Systems Division and its Catalysis & Biocatalysis Program to Professors William Epling, Michael P. Harold, Dan Luss, Lars Grabow, and Vemuri Balakotaiah from the University of Houston (UH) and James Parks from the Oak Ridge National Laboratory (ORNL). The team will use their extensive background knowledge in this area to tailor design catalysts, specifically by optimizing the catalyst composition along the length and diameter of the catalytic converter to take advantage of pollutant concentration and temperature profiles that exist under normal operation. This will ultimately lead to lower temperatures required to achieve high pollutant conversions. Understanding and exploiting the temperature and concentration profiles is a technique still in its infancy, and this novel approach can enhance efficiency for not only exhaust emissions catalysts, but for virtually all catalytic systems.The research team from UH and ORNL is uniquely poised to meet the challenge, through research spanning the molecular to engine level, and with expertise in engine exhaust emissions catalyst synthesis and characterization, reaction modeling and engineering, and combustion and vehicle testing, in state-of-the-art facilities spanning high performance computer clusters, advanced catalyst characterization, bench-scale catalytic reactors and fully-instrumented engines. By simulating the reactions at the molecular level, novel material combinations will be discovered. Lab-scale studies will allow measurement of gas concentration and temperature profiles along the catalyst bed. These measurements will be used to build a computer model of the system, which will in turn be used to predict the optimal catalyst composition along the bed. These predictions will be used to synthesize new catalyst designs to be tested at the lab and engine scale. The results will ultimately be shared with major catalyst manufacturers for their review. A major emphasis of the proposed research is the education and training of graduate and undergraduate students. The students will be using advanced theoretical, computational and experimental tools, training them to become capable chemical engineering researchers. The research will provide the students with a perspective in applying engineering tools to solve environmental problems. The students will also participate in research at the UH Texas Center for Emissions and Fuel Research, where they will have the opportunity to work alongside engineers and industrial collaborators who are developing and testing new technologies on full-scale engines. This project will include junior-level undergraduate students, with targeted recruiting of underrepresented groups. Each undergraduate researcher will be assigned an individual project that is appropriate for their skill level and knowledge. Each will have a graduate student mentor to assist with supervision and advising, also providing the graduate student with supervisory skills training. Ultimately, it will provide graduate students with training for industrial and academic careers and provide undergraduate students with research experience and motivate them to pursue graduate studies. The data will also be posted on the Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS) group website database, accessed by industry, academic and national lab colleagues to better understand new catalyst technologies and develop and tune in-house models.
尽管柴油发动机比汽油发动机更省油,但仍然需要提高燃油经济性。巧合的是,环境政策现在要求柴油发动机的排气管NOx、HC、CO、CO2和PM排放显著减少。为了满足燃料经济性的需求,已经开发了低温燃烧(LTC)发动机。尽管传统柴油发动机排气的相对低温已经是排放控制的挑战,特别是在冷启动期间和怠速条件下,但低温燃烧发动机具有40至70 ℃的低排气温度,这意味着较低的催化剂活性。这些先进的内燃机产生的氮氧化物和颗粒物(烟尘)排放量低于目前的柴油发动机技术,但排放的其他污染物,特别是CO和碳氢化合物(HC)的水平较高。较低温度的排气与较高水平的CO和HC相结合尤其成问题。因此,LTC发动机可能有更好的燃油经济性,但产生显着更高的排放量,因为今天?的催化转化器技术在如此低的温度下效率低下。一个解决方案显然是一个更活跃的催化剂技术。这是简单的陈述,但很难解释。一种新的方法来实现催化剂活性控制已被提出,以响应联合国家科学基金会和能源部的先进内燃机招标。该联合机构奖是通过NSF化学,生物工程,环境和运输系统部门及其催化生物催化计划授予休斯顿大学(UH)的William Epling,Michael P. Harold,Dan Luss,Lars Grabow和Vemuri Balakotaiah教授以及橡树岭国家实验室(ORNL)的James Parks。 该团队将利用他们在该领域的广泛背景知识来定制催化剂设计,特别是通过优化催化剂成分沿着催化转化器的长度和直径,以利用正常操作下存在的污染物浓度和温度分布。这将最终导致实现高污染物转化所需的较低温度。了解和利用温度和浓度分布是一项尚处于起步阶段的技术,这种新方法不仅可以提高废气排放催化剂的效率,而且几乎可以提高所有催化系统的效率。UH和ORNL的研究团队通过从分子到发动机水平的研究,以及发动机废气排放催化剂合成和表征方面的专业知识,反应建模和工程,燃烧和车辆测试,在最先进的设施,包括高性能计算机集群,先进的催化剂表征,实验室规模的催化反应器和全仪表发动机。通过在分子水平上模拟反应,将发现新的材料组合。实验室规模的研究将允许测量气体浓度和温度分布沿着催化剂床。这些测量将用于建立系统的计算机模型,该模型又将用于预测沿床沿着的最佳催化剂组成。这些预测将用于合成新的催化剂设计,以在实验室和发动机规模进行测试。最终结果将与主要催化剂制造商分享,供其审查。 拟议研究的一个主要重点是研究生和本科生的教育和培训。学生将使用先进的理论,计算和实验工具,培养他们成为有能力的化学工程研究人员。这项研究将为学生提供一个应用工程工具解决环境问题的视角。学生们还将参加UH德克萨斯州排放和燃料研究中心的研究,在那里他们将有机会与正在开发和测试全尺寸发动机新技术的工程师和工业合作者一起工作。该项目将包括初级本科生,有针对性地招募代表性不足的群体。每个本科研究人员将被分配一个适合他们的技能水平和知识的个人项目。每一个将有一个研究生导师,以协助监督和咨询,也提供了监督技能培训的研究生。最终,它将为研究生提供工业和学术职业培训,并为本科生提供研究经验,激励他们攻读研究生课程。这些数据还将发布在横切精益排气减排模拟(CLEERS)集团网站数据库上,供行业,学术界和国家实验室同事访问,以更好地了解新的催化剂技术并开发和调整内部模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Epling其他文献
Impact of mild hydrothermal aging on kinetics of NH<math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si202.svg" display="inline" id="d1e2300" class="math"><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math>, NO, SO<math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si180.svg" display="inline" id="d1e2308" class="math"><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math> and CO oxidation reactions on Cu/SSZ-13 catalyst
- DOI:
10.1016/j.cej.2024.151194 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Tetyana Zheleznyak;Petr Kočí;William Epling - 通讯作者:
William Epling
Adapted CO chemisorption technique to measure metal particle dispersion on ceria-containing catalysts
- DOI:
10.1016/j.jcat.2024.115358 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Silvia Marino;Raneen Taha;Yuntao Gu;Wei Li;William Epling - 通讯作者:
William Epling
Reduction of Surface Nitrates via C3H6 Oxidation Over a Pt/Al2O3 Catalyst
- DOI:
10.1007/s11244-013-9938-z - 发表时间:
2013-02-26 - 期刊:
- 影响因子:3.000
- 作者:
Harry Oh;Jinyong Luo;William Epling - 通讯作者:
William Epling
William Epling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Epling', 18)}}的其他基金
NSF-GACR: Atoms to nanoparticles to atoms - predicting evolving catalyst activity under inherently transient conditions
NSF-GACR:原子到纳米粒子到原子 - 预测固有瞬态条件下不断变化的催化剂活性
- 批准号:
2227016 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
ECO-CBET: A holistic effort to decarbonize diesel for heavy duty transportation: Targeted combustion & exhaust catalysis research to improve life-cycle performance
ECO-CBET:重型运输柴油脱碳的整体努力:定向燃烧
- 批准号:
2033675 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
EFRI DCheM: Precise but Tunable Reactions Through Tunably Precise Surfaces
EFRI DCheM:通过可调节精确表面实现精确但可调节的反应
- 批准号:
2029359 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
集成DOE的激光熔覆工艺及先进镍基高温合金熔覆质量控制机理研究
- 批准号:51675303
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
NSF/DOE Solar Hydrogen Fuel: Accelerated Discovery of Advanced RedOx Materials for Solar Thermal Water Splitting to Produce Renewable Hydrogen
NSF/DOE 太阳能氢燃料:加速发现用于太阳能热水分解生产可再生氢的先进氧化还原材料
- 批准号:
1433521 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
NSF/DOE Partnership on Advanced Combustion Engines: Ignition and Combustion Characteristics of Transportation Fuels under Lean-Burn Conditions for Advanced Engine Concepts
NSF/DOE 先进内燃机合作伙伴关系:先进发动机概念稀薄燃烧条件下运输燃料的点火和燃烧特性
- 批准号:
1258720 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: NSF/DOE Advanced Combustion Engines: Radiation Heat Transfer and Turbulent Fluctuations in IC Engines - Toward Predictive Models to Enable High Efficiency
合作研究:NSF/DOE 先进内燃机:内燃机中的辐射传热和湍流脉动 - 建立预测模型以实现高效率
- 批准号:
1258613 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NSF/DOE Partnership on Advanced Combustion Engines: Thermal Barrier Coatings for the LTC Engine - Heat Loss, Combustion, Thermal vs. Catalytic Effects, Emissions, Exhaust Heat
NSF/DOE 高级内燃机合作伙伴关系:LTC 发动机的热障涂层 - 热损失、燃烧、热效应与催化效应、排放、废热
- 批准号:
1258714 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NSF/DOE Advanced Combustion Engines: Collaborative Research: A Comprehensive Investigation of Unsteady Reciprocating Effects on Near-Wall Heat Transfer in Engines
NSF/DOE 先进内燃机:合作研究:对发动机近壁传热的非定常往复效应的综合研究
- 批准号:
1258702 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NSF/DOE Partnership on Advanced Combustion Engines: Low Temperature NOx Storage and Reduction Using Engineered Materials
NSF/DOE 高级内燃机合作伙伴关系:使用工程材料进行低温氮氧化物储存和还原
- 批准号:
1258742 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NSF/DOE Partnership on Advanced Combustion Engines- Modeling and Experimental Studies of Controllable Cavity Turbulent Jet Ignition Systems
NSF/DOE 先进内燃机合作伙伴关系 - 可控腔湍流喷射点火系统的建模和实验研究
- 批准号:
1258581 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: NSF/DOE Advanced Combustion Engines: Radiation Heat Transfer and Turbulent Fluctuations in IC Engines - Toward Predictive Models to Enable High Efficiency
合作研究:NSF/DOE 先进内燃机:内燃机中的辐射传热和湍流脉动 - 建立预测模型以实现高效率
- 批准号:
1258635 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NSF/DOE Partnership on Advanced Combustion Engines: A Universal Combustion Model to Predict Premixed and Non-premixed Turbulent Flames in Compression Ignition Engines
NSF/DOE 高级燃烧发动机合作伙伴关系:预测压燃发动机中预混和非预混湍流火焰的通用燃烧模型
- 批准号:
1258646 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NSF/DOE Advanced Combustion Engines: Collaborative Research: GOALI: Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle
NSF/DOE 先进内燃机:合作研究:GOALI:了解 NOx SCR 机制以及整个催化剂生命周期中铜/菱沸石结构的活性
- 批准号:
1258690 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant














{{item.name}}会员




