Machine-Learning Assisted Flapping Agitator Design Methodology Towards Enhanced Thermal-Hydraulic Performance
机器学习辅助拍板搅拌器设计方法以增强热工水力性能
基本信息
- 批准号:2033790
- 负责人:
- 金额:$ 33.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Thermal transport in air-cooled heat exchangers is critical for effective cooling of power plants, data centers, and electronic devices. However, the performance of an air-cooled heat exchanger is often restricted by insufficient mixing of hot and cold air, which is needed to reduce the required fan power. Over the past few decades, much effort has been devoted to investigating enhanced heat transfer by introducing additional air turbulence. Among all the methods, flow-induced vibration of a flexible thin-film agitator has drawn much attention since it requires no external power, and the large flapping amplitude of the agitator strengthens the intensity of the turbulence. This project will conduct comprehensive experimental investigations to fully establish the flapping dynamics of agitators and resulting heat-transfer characteristics. It will also develop a machine-learning assisted design methodology to enhance performance. The project will integrate machine learning into fluid dynamics research and education, instill the excitement of engineering in high-school students through summer camps, and attract prospective students from under-represented groups towards STEM fields in college.The objective of this project is to develop a machine-learning assisted methodology for fast-optimization of the flexible agitator design in various channel flow conditions towards the maximum synthetic thermal-hydraulic performance. The research approach includes i) Acquire the training data through systematic experimental characterization of self-agitator dynamics on the heat transfer enhancement; ii) Characterize the vortex dynamics due to the added self-agitator in the channel flow with a state-of-the-art stereo time-resolved particle image velocimetry system; iii) Establish a machine‐learning assisted design methodology by using experimental results as training and guiding data to bridge between the given flow and structure conditions and the resultant self-agitator vibration mode, vibration amplitude, vibration frequency, vortex shedding frequency and evolution on the final thermal-hydraulic performances. This work will serve as a comprehensive step towards achieving a fundamental understanding of vorticial flow dynamics under the effect of fluid-structure interaction. Such a knowledge base will pave the way for designing novel air-side heat exchangers that can achieve high-efficiency heat transfer without unduly increasing pumping power.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
风冷换热器中的热传输对于发电厂、数据中心和电子设备的有效冷却至关重要。然而,风冷式热交换器的性能通常受到热空气和冷空气的不充分混合的限制,这是减少所需风扇功率所必需的。在过去的几十年里,人们投入了大量精力来研究通过引入额外的空气湍流来增强传热。其中,柔性薄膜搅拌器的流致振动由于不需要外加动力,且其较大的拍动振幅增强了湍流的强度而备受关注。该项目将进行全面的实验研究,以充分建立搅拌器的扑动动力学和由此产生的传热特性。它还将开发一种机器学习辅助设计方法,以提高性能。该项目将把机器学习整合到流体动力学研究和教育中,通过夏令营向高中生灌输工程学的兴奋,并吸引来自代表性不足的群体的未来学生进入大学STEM领域。该项目的目标是开发一种机器学习辅助方法,在各种通道流动条件下优化柔性搅拌器设计,以实现最大的综合热工水力性能。研究方法包括:(1)通过系统的自搅拌器强化传热动力学特性实验获得训练数据;(2)利用先进的立体时间分辨粒子图像测速系统表征通道流中自搅拌器的涡动力学特性;(三)通过使用实验结果作为训练和指导数据,建立机器学习辅助设计方法,在给定的流动和结构条件与结果之间建立桥梁自搅拌器的振动模态、振幅、振动频率、旋涡脱落频率以及对最终热工水力性能的影响。这项工作将作为一个全面的一步,实现了流体-结构相互作用的影响下的涡流动力学的基本理解。这样的知识库将为设计新型空气侧热交换器铺平道路,这种热交换器可以在不过度增加泵功率的情况下实现高效传热。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal-hydraulic-dynamic investigation of an inverted self-fluttering vortex generator
- DOI:10.1016/j.ijheatmasstransfer.2022.123374
- 发表时间:2022-11
- 期刊:
- 影响因子:5.2
- 作者:Robin Pham;Sheng Wang;Jack Dahlgren;Nathaniel Grindstaff;Chung-Lung Chen
- 通讯作者:Robin Pham;Sheng Wang;Jack Dahlgren;Nathaniel Grindstaff;Chung-Lung Chen
Boundary-Layer Agitator for Advanced Convective Mixing
用于高级对流混合的边界层搅拌器
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Robin Pham, Chung-Lung Chen
- 通讯作者:Robin Pham, Chung-Lung Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung-Lung Chen其他文献
Chung-Lung Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A framework for machine learning assisted directed evolution of plastic-degrading enzymes
机器学习辅助塑料降解酶定向进化的框架
- 批准号:
10059716 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Launchpad
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226918 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226908 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Machine Learning Supported Assisted Travel
机器学习支持的辅助出行
- 批准号:
10059513 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Grant for R&D
Machine learning assisted modelling and discovery of materials for low-carbon hydrogen production
机器学习辅助低碳制氢材料的建模和发现
- 批准号:
2868712 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Studentship
(Inter)facing the Bitter Truth: How to Design Better Interfaces in Next-Gen Batteries using Atomistic Simulations Assisted by Machine-Learning
(交互)面对痛苦的真相:如何使用机器学习辅助的原子模拟设计下一代电池中更好的界面
- 批准号:
2886070 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Studentship
Development of heat-resistant cast aluminum alloys assisted by machine learning
机器学习辅助耐热铸造铝合金的开发
- 批准号:
23KJ0143 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Metal extraction using biocompatible ionic liquid system assisted by machine learning
机器学习辅助下使用生物相容性离子液体系统提取金属
- 批准号:
22KF0286 - 财政年份:2023
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




