EAGER: Collaborative Research: NSF2026: Is Plastic Degradation Occurring in the Deep Ocean Water Column?

EAGER:合作研究:NSF2026:深海水柱中是否发生塑料降解?

基本信息

  • 批准号:
    2033860
  • 负责人:
  • 金额:
    $ 23.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

With support from the NSF 2026 program in the NSF Office of Integrated Activities, a team of researchers from four institutions will investigate the processes that affect plastic debris and its ultimate fate once it enters the ocean interior. Since 1950, global production of plastic has grown exponentially. An estimated 5 to 13 million metric tons of plastic flows from the land and enters the ocean each year. However, model assessment indicates that 99% or more of the plastic entering the ocean is currently unaccounted for. The goal of the project is to understand the physical modification and biochemical transformation of plastic debris by microbial communities in the mid- and deep-waters of the open ocean near Bermuda. The project directly addresses two of the top thirty-three Idea Machine entries: “Imagine a Life With Clean Oceans” and “Global Microbiome in a Changing Planet.” The investigators will deploy incubators to evaluate plastic degradation at 600 meters and 3600 meters water depth at the NSF-funded Oceanic Flux Program (OFP) mooring site. Results from this project will further understanding of the mechanistic processes that govern decomposition of plastic particles in the mid-depth (600 meters) and deeper (3600 meters) ocean, as well as the microbial communities involved with biodegradation of plastics at those depths. The results will have broad implications to the fields of ocean biogeochemistry, environmental sciences, and microbial ecology. With the deep-sea incubator deployed inline on the OFP mooring being a new method to study plastic polymer degradation processes in situ, this research contributes significantly to technology development for oceanographic research. Results from this project will also provide insights into the global budget of plastics, potentially filling the knowledge gap on the fate of plastic and thus affecting plastic management policies. Knowledge of the role of deep ocean microbial communities in the degradation of synthetic plastic polymers will be very valuable information for industry and policymakers. The collaboration of the American Chemistry Council, which is providing polymers for the project, will strengthen the cooperation between academia and industry. Education is an essential part of this project, which includes one postdoctoral researcher and multiple undergraduate students. Project results will be incorporated into undergraduate courses and communicated through outreach activities for the broader public. The investigators propose to test three sets of hypotheses: (1) Different polymers promote the assembly of distinct microbiomes, and these microbiomes differ between the mesopelagic and bathypelagic ocean regimes; (2) Plastics are degraded within the ocean interior, different plastic polymer types are degraded at different rates, and these rates differ between the mesopelagic and bathypelagic ocean regimes; and (3) Deep ocean microbiomes actively degrade plastics and utilize plastic polymers as a carbon source. These hypotheses will be tested deploying custom-built deep-sea incubators at 600 m and 3600 m containing well-defined plastic polymer films and fibers on the OFP mooring, located in the northern Sargasso Sea about 75 km south-east of Bermuda. The polymers deployed will represent the diversity of plastics found in the marine environment and have different stabilities against microbial degradation (e.g., polyethylene, polyethylene terephthalate, and others). This project will combine state-of-the-art polymer chemistry analyses (pyrolysis-GCMS and Raman, and micro-FTIR) with microscopy, and lipid (GCMS and GCirMS) and nucleic acid sequencing analyses, to determine if microbial communities can degrade polymers in the deep mesopelagic and bathypelagic ocean. The results will determine if microbial communities living within the aphotic ocean interior actively degrade and utilize the synthetic carbon polymers that make up plastics, and thus play an important role in the removal of global plastics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在 NSF 综合活动办公室 NSF 2026 计划的支持下,来自四个机构的研究人员团队将研究影响塑料碎片的过程及其进入海洋内部后的最终命运。自 1950 年以来,全球塑料产量呈指数级增长。据估计,每年有 5 至 1300 万吨塑料从陆地流入海洋。然而,模型评估表明,目前进入海洋的 99% 或更多塑料下落不明。该项目的目标是了解百慕大附近公海中层和深水区微生物群落对塑料碎片的物理改性和生化转化。该项目直接涉及前 33 个创意机器条目中的两个:“想象清洁海洋的生活”和“不断变化的星球中的全球微生物组”。研究人员将在 NSF 资助的海洋通量计划 (OFP) 系泊地点部署孵化器,以评估 600 米和 3600 米水深的塑料降解情况。该项目的结果将进一步了解控制中深度(600米)和更深(3600米)海洋中塑料颗粒分解的机械过程,以及在这些深度参与塑料生物降解的微生物群落。研究结果将对海洋生物地球化学、环境科学和微生物生态学领域产生广泛影响。随着OFP系泊设备内联部署的深海培养箱成为研究塑料聚合物原位降解过程的新方法,这项研究对海洋学研究的技术发展做出了重大贡献。该项目的结果还将提供有关全球塑料预算的见解,有可能填补有关塑料命运的知识空白,从而影响塑料管理政策。 了解深海微生物群落在合成塑料聚合物降解中的作用对于行业和政策制定者来说将是非常有价值的信息。为该项目提供聚合物的美国化学理事会的合作将加强学术界和工业界之间的合作。教育是该项目的重要组成部分,其中包括一名博士后研究员和多名本科生。项目结果将纳入本科课程,并通过推广活动向更广泛的公众传播。研究人员建议测试三组假设:(1)不同的聚合物促进不同微生物组的组装,这些微生物组在中上层和深海海洋区之间存在差异; (2) 塑料在海洋内部降解,不同的塑料聚合物类型以不同的速率降解,并且这些速率在中深海和深深海区域之间有所不同; (3)深海微生物组积极降解塑料并利用塑料聚合物作为碳源。这些假设将通过在位于百慕大东南部约 75 公里的马尾藻海北部的 OFP 系泊装置上部署 600 m 和 3600 m 处定制的深海孵化器进行测试,其中包含明确的塑料聚合物薄膜和纤维。所采用的聚合物将代表海洋环境中塑料的多样性,并且具有不同的抗微生物降解稳定性(例如聚乙烯、聚对苯二甲酸乙二醇酯等)。该项目将把最先进的聚合物化学分析(热解-GCMS 和拉曼以及微型 FTIR)与显微镜、脂质(GCMS 和 GCirMS)以及核酸测序分析相结合,以确定微生物群落是否可以降解中深海和深海中的聚合物。结果将确定生活在无光海洋内部的微生物群落是否主动降解和利用构成塑料的合成碳聚合物,从而在清除全球塑料方面发挥重要作用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rut Pedrosa Pamies其他文献

Rut Pedrosa Pamies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rut Pedrosa Pamies', 18)}}的其他基金

Time Series Particle Flux Measurements in the Sargasso Sea
马尾藻海中的时间序列粒子通量测量
  • 批准号:
    2414704
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了