SitS: Coupling High Frequency Soil Solute Signals and Scalable Simulations to Quantify Biogeochemical Mechanisms Governing Water Quality
SitS:耦合高频土壤溶质信号和可扩展模拟来量化控制水质的生物地球化学机制
基本信息
- 批准号:2034430
- 负责人:
- 金额:$ 94.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award was made through the "Signals in the Soil (SitS)" solicitation, a collaborative partnership between the National Science Foundation and the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA). Agricultural areas face a pervasive problem of poor water quality that is tied to inefficient use of fertilizer-provided nutrients by crops. Soils play a key role in regulating whether nutrients from fertilizers actually add value to the plant growth or if the nutrients are not absorbed and end up contaminating groundwaters and streams. The ability to understand how to promote the retention of nutrients in soils, reduce the potential for water resource contamination, and increase delivery of nutrients to crop production are collectively hampered by the inability to make direct observations of the activities of dissolved chemicals in soil water. This work will use new sensors embedded in soils to observe a suite of added nutrients, including the key nutrient and major water contaminant nitrate, over a range of experimental and field conditions. These buried sensors will transmit data electronically, and a soil model will be used to interpret the signals. The results of this work will identify conditions that balance water quality and sustainable plant production in model rain-irrigated systems of the Northern Great Plains. This project will also motivate activities supporting science, technology, engineering, and math (STEM) education and participation in underserved communities of the region. If successful, this project will strengthen the nation’s food security while preserving water resources by providing technology that makes the use of agricultural fertilizers more efficient and decreases the negative environmental impacts of these fertilizers.The movement of water through soils mediates both weathering reactions and biogeochemical cycles to drive solute loads delivered to groundwater and rivers. However, current sensor technologies and solute transport modeling approaches limit the efficacy of efforts to address critical questions about soil processes governing the consequences of land use for water quality. In soils, the highly soluble and mobile nitrate ion provides an indicator of nitrogen (N) availability and transformation, serving as a frequently studied yet under-observed signal molecule in disturbed and fertilized systems. Nitrate concentrations in soils are currently quantified using destructive soil sampling, a technique used for over a century. In-situ and real-time measurements of nitrate concentrations in soil waters are lacking. Two limitations hamper understanding of the nitrate signal: 1) lack of high-frequency observations of soil solution composition, and 2) lack of observations that differentiate dynamics in nitrate concentrations driven by variation in the pore structure of the soil fabric. This work will develop, test, and produce a coupled multi-scale sensor approach and solute transport modeling framework capable of scaling reaction dynamics from pore to profile scales. The team will undertake measurements of nitrate in parallel with measurements of general water quality (conductivity, pH, temperature), to address how variation in soil water biogeochemistry associated with variation in pore structure dictates nitrate fate and transport in agricultural soils. Results will include the establishment of new technologies for exploring mechanisms interrelating physical soil structure, hydrologic dynamics, and solute reaction regimes from pores to profiles. These fundamental insights about soil systems will benefit efforts to balance water quality protection with sustainable food production.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是通过“土壤信号”征集活动获得的,该征集活动是美国国家科学基金会和美国农业部国家粮食和农业研究所(USDA NIFA)之间的合作伙伴关系。农业地区普遍面临着水质差的问题,这与作物对肥料提供的养分的利用效率低下有关。土壤在调节肥料中的养分是否真的对植物生长有价值,还是养分没有被吸收而最终污染地下水和溪流方面发挥着关键作用。由于无法直接观察土壤水中溶解化学物质的活动,了解如何促进土壤中营养物质的保留、减少水资源污染的可能性以及增加向作物生产输送营养物质的能力都受到了阻碍。这项工作将使用嵌入土壤中的新型传感器,在一系列实验和现场条件下观察一系列添加的营养物质,包括关键营养物质和主要水污染物硝酸盐。这些埋在地下的传感器将以电子方式传输数据,并使用土壤模型来解释信号。这项工作的结果将确定在北部大平原的模拟雨水灌溉系统中平衡水质和可持续植物生产的条件。该项目还将推动支持科学、技术、工程和数学(STEM)教育的活动,并促进该地区服务欠缺社区的参与。如果成功,该项目将通过提供技术,提高农业肥料的使用效率,减少这些肥料对环境的负面影响,从而加强国家的粮食安全,同时保护水资源。水在土壤中的运动介导了风化反应和生物地球化学循环,从而驱动溶质载荷进入地下水和河流。然而,目前的传感器技术和溶质运移建模方法限制了解决土壤过程控制土地利用对水质影响的关键问题的有效性。在土壤中,高可溶性和可移动的硝酸盐离子提供了氮(N)有效性和转化的指标,是在扰动和施肥系统中经常被研究但未被观察到的信号分子。目前,土壤中的硝酸盐浓度是通过破坏性土壤取样来量化的,这种技术已经使用了一个多世纪。缺乏对土壤水体中硝酸盐浓度的现场和实时测量。两个限制阻碍了对硝酸盐信号的理解:1)缺乏对土壤溶液组成的高频观测;2)缺乏对土壤结构孔隙结构变化驱动的硝酸盐浓度变化的区分观测。这项工作将开发、测试和生产一种耦合的多尺度传感器方法和溶质输运建模框架,能够将反应动力学从孔隙尺度扩展到剖面尺度。该小组将在测量一般水质(电导率、pH值、温度)的同时进行硝酸盐的测量,以解决土壤水生物地球化学的变化与孔隙结构的变化如何决定硝酸盐在农业土壤中的命运和运输。结果将包括建立新的技术来探索土壤物理结构、水文动力学和溶质反应机制之间的相互关系。这些关于土壤系统的基本见解将有助于平衡水质保护与可持续粮食生产的努力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applying Software Quality in Use Standards to Improve Scientific Software Selection
将软件质量应用于使用标准,提高软件选型的科学性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hastings, Y.;A.M. Reinhold
- 通讯作者:A.M. Reinhold
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Ewing其他文献
A Collaborative Approach to Reducing Surgical Site Infections for Cesarean Patients
- DOI:
10.1016/j.jogn.2023.05.074 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Raluca Anca;Kristen Hallman;Melissa Wheeler;Elizabeth Quigley;Stephanie Ewing;Kerri Simone - 通讯作者:
Kerri Simone
Sentinel-2-based predictions of soil depth to inform water and nutrient retention strategies in dryland wheat
基于 Sentinel-2 的土壤深度预测可为旱地小麦的水分和养分保留策略提供信息
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.7
- 作者:
S. Fordyce;Patrick M. Carr;Clain A. Jones;J. Eberly;W. A. Sigler;Stephanie Ewing;Scott L. Powell - 通讯作者:
Scott L. Powell
Improving Maternal Severe Hypertension Recognition and Treatment
- DOI:
10.1016/j.jogn.2024.05.062 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Melissa McKinney;Kathryn Bonasia;Kristen Hallman;Raluca Anca;Stephanie Ewing;Julie Iannacone - 通讯作者:
Julie Iannacone
Stephanie Ewing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Ewing', 18)}}的其他基金
RAPID: Geomorphic controls on sediment age, ice preservation, and carbon storage in arctic permafrost systems
RAPID:北极永久冻土系统中沉积年龄、冰保存和碳储存的地貌控制
- 批准号:
2136818 - 财政年份:2021
- 资助金额:
$ 94.47万 - 项目类别:
Standard Grant
相似国自然基金
基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Development of MHz frequency power converters for resonant capacitive coupling wireless power transmission
开发用于谐振电容耦合无线电力传输的 MHz 频率功率转换器
- 批准号:
RGPIN-2018-03795 - 财政年份:2022
- 资助金额:
$ 94.47万 - 项目类别:
Discovery Grants Program - Individual
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
- 批准号:
RGPIN-2019-06990 - 财政年份:2022
- 资助金额:
$ 94.47万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
- 批准号:
2132329 - 财政年份:2021
- 资助金额:
$ 94.47万 - 项目类别:
Standard Grant
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
- 批准号:
RGPIN-2019-06990 - 财政年份:2021
- 资助金额:
$ 94.47万 - 项目类别:
Discovery Grants Program - Individual
The coupling of spindles and high frequency oscillations during sleep: role in memory and in epilepsy.
睡眠期间纺锤体和高频振荡的耦合:在记忆和癫痫中的作用。
- 批准号:
452204 - 财政年份:2021
- 资助金额:
$ 94.47万 - 项目类别:
Operating Grants
High frequency electrical stimulation and the brain: neurovascular coupling and long-term effects
高频电刺激和大脑:神经血管耦合和长期影响
- 批准号:
RGPIN-2017-04126 - 财政年份:2021
- 资助金额:
$ 94.47万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
- 批准号:
2132323 - 财政年份:2021
- 资助金额:
$ 94.47万 - 项目类别:
Standard Grant
Development of MHz frequency power converters for resonant capacitive coupling wireless power transmission
开发用于谐振电容耦合无线电力传输的 MHz 频率功率转换器
- 批准号:
RGPIN-2018-03795 - 财政年份:2021
- 资助金额:
$ 94.47万 - 项目类别:
Discovery Grants Program - Individual
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
- 批准号:
RGPIN-2019-06990 - 财政年份:2020
- 资助金额:
$ 94.47万 - 项目类别:
Discovery Grants Program - Individual
Development of MHz frequency power converters for resonant capacitive coupling wireless power transmission
开发用于谐振电容耦合无线电力传输的 MHz 频率功率转换器
- 批准号:
RGPIN-2018-03795 - 财政年份:2020
- 资助金额:
$ 94.47万 - 项目类别:
Discovery Grants Program - Individual