RAPID: Characterization of the shear stress enhanced electric field gradients in MOF/Polymers composite thin films and multilayered fibers.

RAPID:MOF/聚合物复合薄膜和多层纤维中剪切应力增强电场梯度的表征。

基本信息

  • 批准号:
    2034643
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical Summary: This RAPID project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, is focused on fundamental investigations, aimed at advancing our knowledge about materials with nanoscale-level filtration capabilities that have possible applications in the development of longer lasting respirators with increased ease-of-wear. This type of research has become necessary due to the current coronavirus (COVID-19) pandemic, of which the loss of lives, reduced financial livelihoods and reduced quality of lives are just a few of the already manifested consequences. In order to regain safe living and working environments, one of the main things needed is personal protective equipment such as facemasks and respirators. Unfortunately, there are worldwide shortages which have resulted in excessive reuse of these protective equipment, oftentimes to the detriment of not only the wearer, but others. Additionally, respirators are also uncomfortable to wear for most people, due to the inherent large pressure gradients and relatively low water vapor transmission. This project provides researchers in academia and industries involved in the development and application of filtration media with specific tuning procedures, which will in turn advance the welfare of society through improvements in our health, living and environmental conditions. Beyond personal protective equipment, the benefits of better nanoscale filtration media also extend to applications including water membrane treatments, nanoreactors, and chemical catalysis. The project involves the participation of students from various socioeconomic and education levels, and because of its interdisciplinary nature, they gain the knowledge and research experience involving aspects of chemistry, engineering, physics and material science. Technical Summary: With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, this RAPID research project focuses on fundamentally characterizing the variable shear stress enhanced local electric field gradients in composite polymers/metal organic frameworks (MOFs) thin films, and multilayered electrospun fibrous materials. The principal investigator and her research group study whether materials that have greater electric fields gradients (EFGs) exhibit superior filtration/adsorption properties. Generally, the filtration properties of composite polymers can be tuned by modification of their surface morphology (diameter, surface roughness, etc.) and one way to accomplish this is by the incorporation of MOFs. To further increase nano-filtration properties, the electrostatic characteristics must be enhanced, and this project accomplishes this by the directional alignment and enhancement of the local electric field gradients using variable sheer stresses. Multinuclear (1H, 2H, and 17O) Magnetic Resonance (NMR) and Scanning Electron Microscopy (SEM) provide information about the local interactions between the various polymers, as well as between the MOFs and the polymers. Information about the electric field gradients is accessed through the quadrupole 2H and 17O nuclei and their magnitudes correlated with the degree of shear stress applied. Polymer type, crystallinity and morphology are also investigated, along with different MOF types and content as well as the order of layering used to construct the multilayered fibrous composites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:这个RAPID项目由材料研究部固体和材料化学项目支持,专注于基础研究,旨在增进我们对具有纳米级过滤能力的材料的知识,这些材料可能应用于开发更持久、更容易磨损的呼吸器。由于目前的冠状病毒(新冠肺炎)大流行,这类研究变得必要,其造成的生命损失、经济生计减少和生活质量下降只是已经显现的后果中的一小部分。为了恢复安全的生活和工作环境,需要的主要物品之一是个人防护装备,如口罩和呼吸器。不幸的是,世界范围内的短缺导致了这些防护装备的过度重复使用,往往不仅损害了佩戴者,也损害了其他人的利益。此外,由于呼吸器固有的大压力梯度和相对较低的水蒸气传输率,对大多数人来说,佩戴口罩也不舒服。该项目为参与开发和应用过滤介质的学术界和行业的研究人员提供了具体的调谐程序,这些程序反过来将通过改善我们的健康、生活和环境条件来促进社会福利。除了个人防护设备外,更好的纳米级过滤介质的好处还延伸到水膜处理、纳米反应器和化学催化等应用领域。该项目涉及来自不同社会经济和教育水平的学生,由于其跨学科性质,他们获得了涉及化学、工程、物理和材料科学方面的知识和研究经验。技术概述:在材料研究部固态和材料化学计划的支持下,这一快速研究项目专注于从根本上表征复合聚合物/金属有机骨架(MOF)薄膜和多层电纺纤维材料中可变剪应力增强的局部电场梯度。首席研究员和她的研究小组研究具有更大电场梯度(EFGs)的材料是否表现出更好的过滤/吸附性能。一般来说,复合聚合物的过滤性能可以通过改变其表面形态(直径、表面粗糙度等)来调节。而实现这一目标的一种方法是通过纳入MOF。为了进一步提高纳米过滤性能,必须增强静电特性,本项目通过使用可变剪应力定向排列和增强局部电场梯度来实现这一点。多核(1H、2H和17O)核磁共振(NMR)和扫描电子显微镜(SEM)提供了各种聚合物之间以及MOF和聚合物之间的局部相互作用的信息。有关电场梯度的信息是通过2H和17O四极核及其与施加的剪应力程度相关的大小来获取的。还调查了聚合物类型、结晶度和形态,以及用于构建多层纤维复合材料的不同MOF类型和含量以及分层顺序。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophia Suarez其他文献

NMR investigation of proton transport in polybenzimidazole/polyphosphoric acid membranes prepared via novel synthesis route
  • DOI:
    10.1016/j.jpowsour.2023.233169
  • 发表时间:
    2023-08-15
  • 期刊:
  • 影响因子:
  • 作者:
    Mounesha N. Garaga;Laura Murdock;Tawhid Pranto;Sophia Suarez;Brian C. Benicewicz;Steven G. Greenbaum
  • 通讯作者:
    Steven G. Greenbaum
Structure and dynamics of ILs-based gel polymer electrolytes and its enhanced conductive properties with the incorporation of Alsub2/subOsub3/sub nanofibers
基于离子液体的凝胶聚合物电解质的结构和动力学及其结合氧化铝纳米纤维后增强的导电性能
  • DOI:
    10.1016/j.electacta.2023.142765
  • 发表时间:
    2023-09-10
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Mounesha N. Garaga;Sahana Bhattacharyya;Domenec Paterno;Sophia Suarez;Steven Greenbaum
  • 通讯作者:
    Steven Greenbaum

Sophia Suarez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophia Suarez', 18)}}的其他基金

EAGER: RUI: Elucidation of the AlCl4- and Al2Cl7- ions speciation, interactions and transport in electrolytes comprised of RTILs by Multi-Nuclear NMR techniques.
EAGER:RUI:通过多核 NMR 技术阐明由 RTIL 组成的电解质中 AlCl4- 和 Al2Cl7- 离子的形态、相互作用和传输。
  • 批准号:
    1841398
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

ERI: Mechanical Characterization of the Interfascicular Matrix of Patellar Tendon in Shear and Transverse Tension
ERI:剪切和横向张力下髌腱束间基质的机械表征
  • 批准号:
    2347433
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanical Characterization of Bio-Interfaces by Shear Wave Scattering
合作研究:通过剪切波散射对生物界面进行机械表征
  • 批准号:
    2225156
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
  • 批准号:
    10461534
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
  • 批准号:
    10700833
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Shear wave absolute vibro-elastography of the liver: method optimization and characterization
肝脏剪切波绝对振动弹性成像:方法优化和表征
  • 批准号:
    537496-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
MRI: Acquisition of a Confocal Microscope Rheometer for Structural Characterization of Complex Fluids & Soft Materials Under Shear
MRI:获取共焦显微镜流变仪用于复杂流体的结构表征
  • 批准号:
    1920156
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Characterization of uterine fibroids using shear wave elastography
使用剪切波弹性成像表征子宫肌瘤
  • 批准号:
    541513-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Shear wave absolute vibro-elastography of the liver: method optimization and characterization
肝脏剪切波绝对振动弹性成像:方法优化和表征
  • 批准号:
    537496-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
Shear behavior of RC members without shear reinforcement – development of a consistent experimental, analytical and numerical characterization methodology
无抗剪钢筋的 RC 构件的抗剪性能 â 开发一致的实验、分析和数值表征方法
  • 批准号:
    420545423
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grants
Collaborative Research: Mechanical Characterization of Bio-Interfaces by Shear Wave Scattering
合作研究:通过剪切波散射对生物界面进行机械表征
  • 批准号:
    1826270
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了