application coordinator

申请协调员

基本信息

项目摘要

The discovery of tunneling magnetoresistance (TMR) and giant magnetoresistance (GMR) in metallic spin valves has led to a revolution of magnetic memory. The storage capacities of today’s modern hard drives increased at a rate unthinkable just ten years ago. Simultaneously, organic materials have come to the forefront of electronic devices and circuitry, since they are cheap to produce, flexible, and diverse in their applications. The combination of both, spintronics and organic electronics, is likely to lead to new generations of spin based devices, which may open a broad range of exciting and still unknown application fields and products in organic spintronics. Our research group initiative aims at the ultimate down-scaled nanostructured device integrating the spintronic functionality of single molecules. We will try to switch the spin transfer through magnetic molecules by changing the alignment of the molecular spins. This ambitious approach towards molecular spintronics combines two interdisciplinary research fields, organic electronics and molecular magnetism. Our endeavors are meant to stimulate fruitful exchange between otherwise disjunct communities, which we hope will help to discover a variety of fundamental phenomena and major physical effects as well as to unravel long-standing scientific problems and discrepancies. The great potential of molecular materials for spintronic applications resides in their weak spin-orbit coupling and hyperfine interactions. These lead to spin-coherence times much longer than in conventional metals and semiconductors, making them perfect building blocks for tunneling barriers or transport layers in spin-based hybrid devices. In addition, the molecules can be easily functionalized, which allows their controlled deposition on inorganic substrates as well as versatile engineering of their electronic and magnetic properties. This project aims at the fundamental understanding and the first experimental demonstration of spin electronic devices based on magnetic molecules. Our activities include: • Tailoring and fundamental characterization of magnetic molecules: Magnetic molecules for implementation into devices will be synthesized and fundamentally investigated by theoretical methods and experimental scanning probe techniques as well as optical and magnetic measurements of bulk materials. Already at this stage we will take into account basic compatibility aspects concerning device processing. • Fabrication, characterization, and optimization of molecular thin films and interfaces: New deposition techniques to create suitable molecular films need to be developed for a variety of molecules. The structure, morphology, and molecular orientation of the layers will be characterized and optimized. The experimental results will be complemented by theoretical predictions for properties of molecules on surfaces. For device integration, the molecular layers need to obey certain boundary conditions, such as long-term stability, process compatibility and the ability to integrate with electrode materials. Continuous feed-back from basic characterization and technology projects allows targeted and efficient synthesis of appropriate molecules and molecular films for device integration. • Device demonstration and on-chip integration: Rolled-up nanotechnology will be used to create a vertically stacked spin valve. We will also realize a laterally stacked three-terminal device for large scale integration purposes. These activities will be accompanied by theoretical investigations of electronic transport. Based on the strong links formed between the partners and the experience gained from the successful joint work during the first funding period, we have been able to realize the first prototypical devices using nonmagnetic electrodes. We will now refine the first two objectives addressed by our Research Unit to ensure the successful accomplishment of the third, i.e., the fabrication of prototypical devices with ferromagnetic electrodes. This Research Unit has access to various high-end and complementary characterization methods, ranging from static and dynamic magnetic characterization to local probe methods as well as (magneto-)optical and electron spectroscopies. This unique combination of methods is exploited to study fundamental properties of single molecules as well as synthesized molecular films. Electrical measurements, new technological concepts, and sophisticated processing facilities provide quick feedback to improve and optimize molecule synthesis and molecular film deposition procedures. During the first funding period new methods with lateral resolution in the nanometer range (tip enhanced Raman spectroscopy (TERS), photoemission microscopy, and current sensing atomic force microscopy in magnetic field) and micrometer range (micro-magneto-optical Kerr effect spectroscopy) were developed in our Research Unit and will be applied in the second funding period to study the optical, electronic, and electrical properties of the devices and the magnetic properties of the ferromagnetic electrodes, respectively. For the device fabrication, in addition to the conventional UV-lithography combined with semiconductor processing and roll-up processing already employed during the first funding period, we will have access to nanoimprint technology. Our goals require close collaboration of experts from physics, chemistry, materials science, and electrical engineering, who are available within the Free State of Saxony. The partners in the consortium are based at the four Saxonian universities (Technische Universität Chemnitz, Technische Universität Dresden, Universität Leipzig, and Technische Universität Bergakademie Freiberg) and the Leibniz-Institut für Festkörper- und Werkstoff-Forschung (IFW) Dresden. The sub-projects in this Research Unit are tailored to systematically address the whole research and development chain from molecule synthesis and molecular film deposition via fundamental characterization and theoretical understanding to device demonstration and integration. Moreover, this Research Unit particularly emphasizes the promotion of young researchers not only in the form of Ph.D. students but also of many young project leaders.
金属自旋阀中隧穿磁阻(TMR)和巨磁阻(GMR)的发现引发了磁记忆的一场革命。现代硬盘的存储容量以十年前难以想象的速度增长。与此同时,有机材料由于其生产成本低、柔韧性强、用途多样等优点,已成为电子器件和电路的前沿。自旋电子学和有机电子学的结合,很可能导致新一代的自旋器件,这可能会在有机自旋电子学中开辟广泛的令人兴奋的和未知的应用领域和产品。我们的研究小组的目标是最终的低尺度纳米结构器件集成了单分子的自旋电子功能。我们将尝试通过改变分子自旋的排列来改变磁性分子的自旋转移。这种雄心勃勃的分子自旋电子学方法结合了有机电子学和分子磁学两个跨学科研究领域。我们的努力是为了刺激不同群体之间富有成效的交流,我们希望这将有助于发现各种基本现象和主要的物理效应,并揭示长期存在的科学问题和差异。分子材料在自旋电子应用方面的巨大潜力在于其弱自旋轨道耦合和超精细相互作用。这使得自旋相干时间比传统金属和半导体长得多,使它们成为自旋混合器件中隧道屏障或传输层的完美基石。此外,分子可以很容易地功能化,这使得它们可以在无机衬底上控制沉积,以及它们的电子和磁性能的通用工程。本项目旨在对基于磁性分子的自旋电子器件的基本认识和首次实验演示。我们的活动包括:•磁性分子的裁剪和基本表征:将磁性分子合成并通过理论方法和实验扫描探针技术以及块状材料的光学和磁性测量进行基本研究。在这个阶段,我们将考虑到有关设备处理的基本兼容性方面。•分子薄膜和界面的制造、表征和优化:需要为各种分子开发新的沉积技术来创建合适的分子薄膜。这些层的结构、形态和分子取向将被表征和优化。实验结果将得到对表面分子性质的理论预测的补充。对于器件集成,分子层需要服从一定的边界条件,如长期稳定性、工艺兼容性以及与电极材料集成的能力。来自基本表征和技术项目的持续反馈允许有针对性和高效地合成适当的分子和分子膜用于设备集成。•设备演示和片上集成:卷起的纳米技术将用于创建垂直堆叠的自旋阀。我们还将实现横向堆叠的三端器件,用于大规模集成目的。这些活动将伴随着电子输运的理论研究。基于合作伙伴之间建立的紧密联系,以及在第一个资助期成功的联合工作中获得的经验,我们已经能够实现第一个使用非磁性电极的原型设备。我们现在将完善我们研究部门所解决的前两个目标,以确保成功完成第三个目标,即制造具有铁磁电极的原型设备。该研究单位拥有各种高端和互补的表征方法,从静态和动态磁性表征到局部探针方法以及(磁)光学和电子能谱。这种独特的方法组合被用来研究单分子的基本性质以及合成的分子膜。电测量,新技术概念和复杂的处理设施提供快速反馈,以改进和优化分子合成和分子膜沉积程序。在第一个资助期,我们的研究部门开发了纳米范围(尖端增强拉曼光谱(TERS),光电显微镜和磁场电流传感原子力显微镜)和微米范围(微磁光克尔效应光谱)的横向分辨率的新方法,并将在第二个资助期应用于研究光学,电子,以及器件的电学性能和铁磁电极的磁学性能。对于器件制造,除了在第一个资助期内已经使用的传统uv光刻结合半导体加工和卷积加工外,我们还将获得纳米压印技术。我们的目标需要来自萨克森自由州的物理、化学、材料科学和电气工程专家的密切合作。该联盟的合作伙伴来自萨克森州的四所大学(Technische Universität开姆尼茨、Technische Universität德累斯顿、Universität莱比锡和Technische Universität Bergakademie Freiberg)和莱布尼茨研究所<e:2> Festkörper- und werkstom - forschung (IFW)德累斯顿。该研究单元的子项目旨在系统地解决从分子合成和分子膜沉积的整个研发链,通过基础表征和理论理解,到设备演示和集成。此外,本研究单位特别强调青年研究人员的提升,不仅以博士生的形式,而且还包括许多年轻的项目负责人。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Dietrich R. T. Zahn其他文献

Professor Dr. Dietrich R. T. Zahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Dietrich R. T. Zahn', 18)}}的其他基金

Gap-Plasmon Tip-Enhanced Raman Scattering of Semiconductor Nanostructures
半导体纳米结构的间隙等离子体尖端增强拉曼散射
  • 批准号:
    410250059
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Environment-friendly 0D/2D nanocomposites for broadband UV-vis-NIR-sensitive photodetectors
用于宽带紫外-可见-近红外敏感光电探测器的环保型 0D/2D 纳米复合材料
  • 批准号:
    424154386
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Raman investigations of In(Ga)As/Al(Ga)As self-assembled quantum dot structures: from ensembles to single quantum dots
In(Ga)As/Al(Ga)As 自组装量子点结构的拉曼研究:从整体到单个量子点
  • 批准号:
    166177096
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Zentralprojekt
中央项目
  • 批准号:
    167532398
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Units
Vibrationsspektroskopie der Grenzfläche zwischen organischen Halbleitern und Kontaktmetall
有机半导体与接触金属之间界面的振动光谱
  • 批准号:
    5305094
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Novel Cation-substituted Quarternary Chalcogenide Nanocrystals Cu2XSnS4 (X = Zn, Ni, Fe, Co): Properties and Potential Applications
新型阳离子取代季硫族化物纳米晶体 Cu2XSnS4(X = Zn、Ni、Fe、Co):特性和潜在应用
  • 批准号:
    517869265
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Correlation between electronic and optical properties of materials used in printed organic solar cells (Project 7)
印刷有机太阳能电池所用材料的电子和光学特性之间的相关性(项目7)
  • 批准号:
    511599979
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

The differential role of PU.1 in normal and malignant haematopoiesis: from master regulator of differentiation to coordinator of leukaemia networks
PU.1在正常和恶性造血中的不同作用:从分化的主调节因子到白血病网络的协调员
  • 批准号:
    MR/X008371/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Examining the Role of District Science Coordinator Professional Learning in Supporting and Retaining Science Teachers
审查地区科学协调员专业学习在支持和留住科学教师方面的作用
  • 批准号:
    2150781
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Church Wellness Coordinator-led Intervention to Improve Hypertension Control in the Black Community
教会健康协调员主导的干预措施改善黑人社区的高血压控制
  • 批准号:
    10706422
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
European Social Survey, Round 11 and 12 UK National Coordinator for the UK component of the European Social Survey
欧洲社会调查第 11 轮和第 12 轮英国欧洲社会调查英国部分国家协调员
  • 批准号:
    ES/X003817/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
The ECM as a coordinator of cardiac function, growth and morphogenesis during heart development
ECM 作为心脏发育过程中心脏功能、生长和形态发生的协调者
  • 批准号:
    BB/W004305/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Ex-Alta 2 Forest Fire Imaging Mission: Assembly, Integration and Testing Coordinator
Ex-Alta 2 森林火灾成像任务:组装、集成和测试协调员
  • 批准号:
    573272-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Church Wellness Coordinator-led Intervention to Improve Hypertension Control in the Black Community
教会健康协调员主导的干预措施改善黑人社区的高血压控制
  • 批准号:
    10597338
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
BRAIN STIMULATION RECONSIDERED - PARTICIPATIVE DEVELOPMENT OF A CODE OF CONDUCT FOR THE EUROPEAN UNION Acronym: TIMCODE Coordinator: Prof. Dr. Martina Schraudner (CERRI)
重新考虑大脑刺激——欧盟参与制定行为准则 缩写:TIMCODE 协调员:Martina Schraudner 教授 (CERRI)
  • 批准号:
    430701
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Difficulties of the home palliative care coordinator and the factors that led to overcoming them
家庭姑息治疗协调员的困难以及导致克服这些困难的因素
  • 批准号:
    20K11124
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Whiteboard Coordinator: Intelligent Sensor Network and Machine Learning toImprove Operating Room Outcomes and Efficiency
白板协调员:智能传感器网络和机器学习可提高手术室成果和效率
  • 批准号:
    10319306
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了