Seeing the Unseen: Passive RF Sensing via Learning

看到看不见的东西:通过学习进行无源射频传感

基本信息

  • 批准号:
    2036236
  • 负责人:
  • 金额:
    $ 23.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project explores the prevalence of wireless services and devices to extract valuable information about the ambient environment. This includes, among others, occupancy status of an indoor environment, occupant and movement/motion classification, and other high-level information that can be inferred from wireless signals. The benefits of having access to such timely and accurate situational awareness information are enormous. Real-time occupancy information is essential for intelligent and green building to reduce carbon footprint of commercial and residential buildings. Accurate motion detection, and in particular, the ability to distinguish motions between human and pets can help provide low-cost home security solutions. Autonomous fall detection in a non-intrusive and continuous manner is key to providing long-term care for the well-being of some of the most vulnerable populations.This project takes a data-driven learning approach for passive RF sensing, i.e., extracting situational awareness information of the ambient environment through judicious processing of existing radio frequency (RF) signals. Passive RF sensing has a unique set of challenges due to inherent RF impairments, environment fluctuation, and transceiver location changes, leading to divergent approaches in the literature. This project brings domain knowledge and strong expertise in wireless communication and RF propagation to passive RF sensing applications. Such domain knowledge is critical for understanding the challenges and helps inform the formulation of associated learning problems including supervised dimensionality reduction, learning with data imbalance, and learning with sampling bias. Striving for a data-driven approach, the project will build up our knowledge of the cause-and-effect relationship between environment and RF signal reception and provide theoretically sound and practically meaningful solutions to a number of passive RF sensing problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目探索无线服务和设备的普及性,以提取有关周围环境的有价值的信息。这包括室内环境的占用状态、占用者和运动/运动分类以及可以从无线信号推断的其他高级信息等。能够获得这种及时和准确的态势感知信息的好处是巨大的。实时的入住率信息是智能绿色建筑减少商住建筑碳足迹的关键。准确的运动检测,特别是区分人类和宠物运动的能力,可以帮助提供低成本的家庭安全解决方案。非侵入性和持续的自主跌倒检测是为一些最脆弱的人群提供长期护理的关键。本项目采用数据驱动的学习方法进行被动射频感知,即通过对现有射频信号的明智处理来提取周围环境的态势感知信息。由于固有的射频损伤、环境波动和收发信机位置变化,被动射频侦听面临着一系列独特的挑战,导致文献中采用的方法各不相同。该项目将无线通信和射频传播方面的领域知识和强大的专业知识带到无源射频侦听应用中。这样的领域知识对于理解挑战至关重要,并有助于为相关学习问题的形成提供信息,包括监督降维、数据不平衡学习和采样偏差学习。致力于数据驱动的方法,该项目将加深我们对环境和射频信号接收之间的因果关系的了解,并为许多无源射频传感问题提供理论上合理和实际有意义的解决方案。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Biao Chen其他文献

Neutrino Mixing in the BLMSSM
BLMSSM 中的中微子混合
Juvenile granulosa cell tumor in pregnancy: case series and literature review
妊娠期幼年型颗粒细胞瘤:病例系列和文献综述
  • DOI:
    10.1007/s00404-021-06283-5
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Elijah Ndhlovu;Huiyang Deng;Jun Dai;Xiyuan Dong;Lili Liu;Biao Chen
  • 通讯作者:
    Biao Chen
The effects of levofloxacin on rabbit fibroblast-like synoviocytes in vitro
左氧氟沙星对体外兔成纤维样滑膜细胞的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Yang Tan;Kaihang Lu;Yu Deng;Hong Cao;Biao Chen;Hui Wang;Jacques Magdalou;Liaobin Chen
  • 通讯作者:
    Liaobin Chen
Isorhynchophylline ameliorates the progression of osteoarthritis by inhibiting the NF-κB pathway
异钩藤碱通过抑制 NF-κB 通路改善骨关节炎的进展
  • DOI:
    10.1016/j.ejphar.2022.174971
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenyu Li;Huasong Shi;Yanmei Li;Wang Wang;Zhexi Li;Biao Chen;Daibang Nie
  • 通讯作者:
    Daibang Nie
Optimal investment and financing with a bank-tax-interaction
银税互动优化投融资
  • DOI:
    10.1016/j.frl.2019.08.030
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Biao Chen;Jinqiang Yang
  • 通讯作者:
    Jinqiang Yang

Biao Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Biao Chen', 18)}}的其他基金

EAGER:SC2: Collaborative Intelligent Radio Network Design For Cooperative Spectrum Sharing
EAGER:SC2:用于协作频谱共享的协作智能无线电网络设计
  • 批准号:
    1737934
  • 财政年份:
    2017
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Energy Efficient Dynamic Spectrum Access in Uncoordinated Networks
SpecEES:协作研究:不协调网络中的节能动态频谱接入
  • 批准号:
    1731237
  • 财政年份:
    2017
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
CIF: Small: Data Reduction for Networked Inference
CIF:小:网络推理的数据缩减
  • 批准号:
    1218289
  • 财政年份:
    2012
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
CIF:Medium:Collaborative Research: Understanding and Managing Interference in Communication Networks
CIF:中:协作研究:理解和管理通信网络中的干扰
  • 批准号:
    0905320
  • 财政年份:
    2009
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
A Unifying Framework for Distributed Inference in Networked Systems
网络系统中分布式推理的统一框架
  • 批准号:
    0925854
  • 财政年份:
    2009
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
CAREER: Aspiring for Spectrum Freedom Through MIMO Overlay Transmission
职业:通过 MIMO 叠加传输追求频谱自由
  • 批准号:
    0546491
  • 财政年份:
    2006
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
Integrated Communication and Signal Processing for Wireless Sensor and Ad Hoc Networks
无线传感器和自组织网络的集成通信和信号处理
  • 批准号:
    0501534
  • 财政年份:
    2005
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant

相似海外基金

Reducing Global Catastrophic Risks from Unseen Climate Extremes
减少未曾见过的极端气候带来的全球灾难性风险
  • 批准号:
    MR/X03450X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Fellowship
Unseen Architectures: Revealing Low Mass Planets on Long Period Orbits
看不见的结构:揭示长周期轨道上的低质量行星
  • 批准号:
    2307467
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
CAREER: A comprehensive computational platform for detecting yet unseen microbial pathogens
职业:用于检测尚未见过的微生物病原体的综合计算平台
  • 批准号:
    2239114
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
UNSEEN: Are unseen plastic particles in the global ocean already beyond the "no-effect" concentrations?
看不见的:全球海洋中看不见的塑料颗粒是否已经超出了“无影响”浓度?
  • 批准号:
    NE/X012891/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Research Grant
Revealing the Unseen Universe with Gravitational Lensing
用引力透镜揭示看不见的宇宙
  • 批准号:
    DP230101775
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Discovery Projects
Aphid protective symbionts as unseen drivers of population and community dynamics and the impact for biological control
蚜虫保护性共生体作为种群和群落动态的看不见的驱动因素以及对生物控制的影响
  • 批准号:
    2887899
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Studentship
LOSS-SAMPLER: Tools for quantifying and managing unseen volatility in CER portfolios
LOSS-SAMPLER:用于量化和管理 CER 投资组合中未见波动的工具
  • 批准号:
    10057920
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Small Business Research Initiative
CAREER: Fast Radio Bursts Illuminating the Unseen Universe
事业:快速射电爆发照亮了看不见的宇宙
  • 批准号:
    2240032
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
Performing the Unseen. A Practice-led exploration of intangible cultural memory through engagement with the Alastair MacLennan Performance Art Archive
表演看不见的事。
  • 批准号:
    2778677
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Studentship
Domain Adaptation Frameworks for Road Scene Segmentation in Unseen Environments
未知环境中道路场景分割的领域适应框架
  • 批准号:
    22K17976
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了