ENG: CCSS: Long Term Reliable Neural Recordings and Neuro Modulation Using GHz Ultrasonics

ENG:CCSS:使用 GHz 超声波进行长期可靠的神经记录和神经调制

基本信息

  • 批准号:
    2037562
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Neural technology with the ability to excite and sense electrically active cells in the body has the potential of solving diseases such as epilepsy, and help preserve body function due to spinal cord disorders, and also create new approaches to treat diseases by periodic excitation of nerves. There have been significant advances in the neural interface technology in which electronic circuits and electrodes sense and excite nerve and neurons. Despite the promise and the advancements in neural interfaces technology, there are two areas of deficiency that have prevented long-term stable interfaces to nerves and neurons. These include non-specific excitation of nerves and long-term stability of excitation and sensing of action potentials. In the case of deep brain implants and vagus nerve stimulation, the excitation is conducted by large electrodes that expose the neuronal tissue with current exciting many neurons and axons concurrently. The non-cell-specific excitation can lead to unintended downstream effects in electrically stimulating effects in many parts of the body. Axon specific or axon-bundle specific excitation would be beneficial for targeting nerves intended for particular body function and is a goal of this program. The conductive or capacitive interfaces to neurons and tissue in probes do not last beyond a few weeks to a few months, as glial cell response on electrodes insulates the electron flow, and weakens signals with capacitive readout. This lifetime limitation prevents the wide-spread use of neural probes, and even in applications where that are required, repeated surgeries replace insulated probes. This proposal will develop ultrasonic neural interfaces to sense action potentials over a patient's lifetime would pave the way for neural probe-based diagnosis and control of diseases. The proposed effort is to develop a neural probe technology that can rely on ultra-high frequency ultrasonic waves to affect neuron activation and to sense the action potentials generated by the cells. CMOS integrated GHz ultrasonic transducers will stimulate neurons and detect action potentials. The technology will be optimized first in vitro operation on neurons, and then test probes in mice brains. Ultrasonic transducer arrays with operating frequencies from 400 MHz to 2-GHz will be designed and fabricated. A microfluidic chip assembly will be applied and attached to the ultrasonic transducers. The microfluidic chip will allow for the isolation and control of the mechanisms of ultrasonic stimulation and sensing. The microfluidic chamber will control the volume and acoustic boundary conditions to modulate acoustic streaming and acoustic radiation pressure while providing pathways for the action potential related ion fluxes to be detected by ultrasonic pulses. The cell stimulation with ultrasound will be verified using optical Total Internal Reflection Fluorescence microscopy (TIRFm) and electrical measurements using electrical probes, in addition to ultrasonic interrogations. The new knowledge created will be disseminated by training graduate students, and developing a class on ultrasonic microsystems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经技术具有激发和感知体内电活动细胞的能力,具有解决癫痫等疾病的潜力,并有助于保持因脊髓疾病引起的身体功能,还可以通过周期性兴奋神经来创造治疗疾病的新方法。神经接口技术在电子电路和电极感知和激发神经和神经元方面取得了重大进展。尽管神经接口技术的前景和进步,有两个方面的缺陷阻碍了神经和神经元的长期稳定接口。这些包括神经的非特异性兴奋和长期稳定的兴奋和动作电位的感觉。在深部脑植入和迷走神经刺激的情况下,激发是通过大电极暴露神经元组织,电流同时刺激许多神经元和轴突来实现的。非细胞特异性兴奋可导致身体许多部位的电刺激效应产生意想不到的下游效应。轴突特异性或轴突束特异性兴奋将有利于针对特定身体功能的神经,这是该计划的目标。探针中与神经元和组织的导电或电容界面持续时间不会超过几周到几个月,因为电极上的神经胶质细胞反应将电子流隔离,并通过电容读出减弱信号。这种寿命限制阻碍了神经探针的广泛使用,甚至在需要重复手术替代绝缘探针的应用中。这一提议将开发超声神经接口来感知病人一生的动作电位,为基于神经探针的疾病诊断和控制铺平道路。这项研究的目标是开发一种神经探针技术,这种技术可以依靠超高频超声波来影响神经元的激活,并感知细胞产生的动作电位。CMOS集成GHz超声换能器将刺激神经元并检测动作电位。该技术将首先在神经元的体外操作中进行优化,然后在小鼠大脑中进行探针测试。将设计和制造工作频率为400 MHz至2 ghz的超声波换能器阵列。超声波换能器将采用微流控芯片组件。微流控芯片将允许超声波刺激和传感机制的隔离和控制。微流控室通过控制体积和声边界条件来调节声流和声辐射压力,同时为超声脉冲检测动作电位相关离子通量提供途径。超声细胞刺激将通过光学全内反射荧光显微镜(TIRFm)和电探针的电测量来验证,此外还有超声询问。所创造的新知识将通过培训研究生和开设超声微系统课程来传播。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GHz Ultrasound and Electrode Chip-Scale Arrays Stimulate and Influence Morphology of Human Neural Cells
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amit Lal其他文献

Correction of Transmitters’ Pixel Values in an Ultrasonic Fourier Transform Analog Computing Apparatus
超声波傅里叶变换模拟计算装置中发射器像素值的校正
Demonstration of waferscale voltage amplifier and electrostatic quadrupole focusing array for compact linear accelerators
用于紧凑型直线加速器的晶圆级电压放大器和静电四极聚焦阵列演示
  • DOI:
    10.1063/1.5091979
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    K. Vinayakumar;S. Ardanuc;Q. Ji;A. Persaud;P. Seidl;Thomas Schenkel;Amit Lal
  • 通讯作者:
    Amit Lal
Sonic Fourier Transform Imaging Using GHz Ultrasonic Transducer Array
使用 GHz 超声波换能器阵列进行声波傅里叶变换成像
新生仔ラットの頸髄における吸息関連運動ニューロン
新生大鼠颈脊髓中吸气相关运动神经元
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makio Ishiguro;Shigeharu Kawai;Yasumasa Okada;Yoshitaka Oku;Fumikazu Miwakeichi;Yoshiyasu Tamura;Amit Lal;Shinozaki Y;横田 茂文
  • 通讯作者:
    横田 茂文
Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm
呼吸神经元网络的双振荡器模型产生呼吸节律的量子减慢
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amit Lal;Yoshitaka Oku;Swen Hulsmann;Yasumasa Okada;Fumikazu Miwakeichi;Shigeharu Kawai;Yoshiyasu Tamura;Makio Ishiguro
  • 通讯作者:
    Makio Ishiguro

Amit Lal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amit Lal', 18)}}的其他基金

EAGER: Long Term Reliable Neural Recordings and Neuro Modulation Using GHz to THz Ultrasonics
EAGER:使用 GHz 至 THz 超声波进行长期可靠的神经记录和神经调制
  • 批准号:
    1744271
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
I-Corps: Commercialization Feasibility Study of Mesocale Planar Heliostats
I-Corps:中尺度平面定日镜商业化可行性研究
  • 批准号:
    1401669
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Modular Nanoengineering for the Future of Bits and Bytes
面向比特和字节未来的模块化纳米工程
  • 批准号:
    1245680
  • 财政年份:
    2013
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Self-Powered Ultra High Vacuum Technology for Harsh Environment Wireless Sensors
适用于恶劣环境无线传感器的自供电超高真空技术
  • 批准号:
    1128545
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Application of Ultrasonic Pulses to MEMS
职业:超声波脉冲在 MEMS 中的应用
  • 批准号:
    0315583
  • 财政年份:
    2002
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Application of Ultrasonic Pulses to MEMS
职业:超声波脉冲在 MEMS 中的应用
  • 批准号:
    9985314
  • 财政年份:
    2000
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
  • 批准号:
    2318758
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245607
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CCSS: Distributed Swarm Learning for Internet of Things at the Edge
CCSS:边缘物联网的分布式群体学习
  • 批准号:
    2231209
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
  • 批准号:
    2348046
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CCSS Expansion Study Supplement
CCSS 扩展研究补充材料
  • 批准号:
    10876211
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了