RTG: Analysis and Partial Differential Equations at the University of Wisconsin
RTG:威斯康星大学的分析和偏微分方程
基本信息
- 批准号:2037851
- 负责人:
- 金额:$ 179.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Research Training Group project brings new students and postdoctoral researchers into research groups in analysis and partial differential equations. The twelve senior personnel will recruit junior mathematicians to join the group as students and postdocs and closely mentor them throughout their training. The project places particular emphasis on diversifying the group’s undergraduate and graduate programs through expanded, targeted recruitment efforts and structured mentoring. Seminar exchanges and international collaborations will develop a mentor coalition among research groups, while also providing advanced graduate students and postdoctoral researchers at other institutions opportunities to come to the University of Wisconsin-Madison to interact with the group’s senior personnel. Annual RTG workshops will provide a more intensive venue for the sharing of research results and development of collaborative relationships among researchers from all seniority levels. Weekly graduate writing groups during the academic year will be complemented by annual writing camps involving early-career researchers from other universities.The project capitalizes on the experience of the University of Wisconsin-Madison faculty in analysis and partial differential equations to connect mathematicians at all levels of experience with cutting edge research. The project gives trainees the opportunities and mentoring needed to become leaders in the rapidly growing fields of harmonic analysis, spectral theory, analytic number theory, dispersive equations, fluid dynamics, and nonlinear elliptic and parabolic equations. Traditional graduate and postdoctoral research opportunities will be augmented by community-oriented mentoring structures, while new undergraduate research programs and courses will provide the most junior trainees a foothold in high-demand research areas. Vertical integration, in which senior personnel, postdoctoral researchers, and graduate and undergraduate students collaborate on projects, will increase research productivity while also providing opportunities for trainees to develop their skills as the next generation of educators and mentors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究培训小组项目将新的学生和博士后研究人员带入分析和偏微分方程的研究小组。这12名高级人员将招募初级数学家作为学生和博士后加入该组织,并在整个培训过程中密切指导他们。该项目特别强调通过扩大、有针对性的招聘工作和结构化的指导,使该集团的本科和研究生课程多样化。研讨会交流和国际合作将在研究小组之间建立导师联盟,同时也为其他机构的高级研究生和博士后研究人员提供来到威斯康星大学麦迪逊分校与该集团高级人员互动的机会。RTG年度研讨会将为所有级别的研究人员分享研究成果和发展合作关系提供一个更密集的场所。在学年期间,每周的研究生写作小组将由来自其他大学的早期职业研究人员参加的年度写作营作为补充。该项目利用威斯康星大学麦迪逊分校教师在分析和偏微分方程方面的经验,将各级经验的数学家与前沿研究联系起来。该项目为学员提供了成为谐波分析,谱理论,解析数论,色散方程,流体动力学以及非线性椭圆和抛物方程等快速发展领域的领导者所需的机会和指导。传统的研究生和博士后研究机会将通过面向社区的指导结构得到增强,而新的本科研究项目和课程将为大多数初级学员提供在高需求研究领域的立足点。垂直整合,高级人员,博士后研究人员,研究生和本科生合作的项目,将提高研究生产力,同时也为学员提供机会,发展他们的技能,作为下一代的教育家和导师。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Betsy Stovall其他文献
Extremizability of Fourier restriction to the paraboloid
抛物面傅立叶限制的极值性
- DOI:
10.1016/j.aim.2019.106898 - 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Betsy Stovall - 通讯作者:
Betsy Stovall
Uniform estimates for the X-ray transform restricted to polynomial curves
X 射线变换的统一估计仅限于多项式曲线
- DOI:
10.1016/j.jfa.2012.03.020 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Dendrinos;Betsy Stovall - 通讯作者:
Betsy Stovall
Uniform estimates for Fourier restriction to polynomial curves in ℝd
- DOI:
10.1353/ajm.2016.0021 - 发表时间:
2016-04 - 期刊:
- 影响因子:1.7
- 作者:
Betsy Stovall - 通讯作者:
Betsy Stovall
ENDPOINT L → L BOUNDS FOR INTEGRATION ALONG POLYNOMIAL CURVES
沿多项式曲线积分的端点 L → L 界限
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Betsy Stovall - 通讯作者:
Betsy Stovall
SOME PROBLEMS IN HARMONIC ANALYSIS WITH CONTRIBUTIONS BY ALMUT BURCHARD, CIPRIAN DEMETER,
调和分析中的一些问题 ALMUT BURCHARD、CIPRIAN DEMETER 的贡献
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
L. Grafakos;D. O. Silva;M. Pramanik;A. Seeger;Betsy Stovall - 通讯作者:
Betsy Stovall
Betsy Stovall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Betsy Stovall', 18)}}的其他基金
Problems in Harmonic Analysis Relating to Curvature
与曲率相关的谐波分析问题
- 批准号:
2246906 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
International Conference to celebrate 200 years of Fourier analysis
庆祝傅里叶分析 200 周年的国际会议
- 批准号:
2154020 - 财政年份:2022
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
CAREER: Degeneracies of Curvature in Harmonic Analysis
职业:调和分析中曲率的简并性
- 批准号:
1653264 - 财政年份:2017
- 资助金额:
$ 179.97万 - 项目类别:
Continuing Grant
Counteracting flatness with affine measures and related problems in harmonic analysis
用仿射测量抵消平坦度以及调和分析中的相关问题
- 批准号:
1600458 - 财政年份:2016
- 资助金额:
$ 179.97万 - 项目类别:
Continuing Grant
International Conference in Harmonic Analysis
国际谐波分析会议
- 批准号:
1565806 - 财政年份:2016
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
Curvature-Related Problems in Harmonic Analysis
谐波分析中与曲率相关的问题
- 批准号:
1266336 - 财政年份:2013
- 资助金额:
$ 179.97万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Discovery Projects
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Standard Grant
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
- 批准号:
2245242 - 财政年份:2023
- 资助金额:
$ 179.97万 - 项目类别:
Continuing Grant














{{item.name}}会员




