A Multiscale Investigation of Fatigue Induced Damage Progression in Tendon
肌腱疲劳损伤进展的多尺度研究
基本信息
- 批准号:2038057
- 负责人:
- 金额:$ 66.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Tendon is a load-bearing tissue that is loaded through millions of cycles over a lifespan. These intense cyclic loads can lead to injury. This study will lay the groundwork for understanding the complexities in deteriorating structural integrity of tendon due to repeated loading. Tendon is a biological material with hierarchical “building blocks” that span several length scales. Therefore, it is important to understand the mechanical behavior and degradation due to fatigue loading at each scale. This work will use experiments at multiple scales, computational modeling, and advances in multiscale simulations to reveal how structural damage of the tissue affects the micro-environment of the tendon cells responsible for the repair of the tissue. Uncovering the mechanisms underlying tendon’s remarkable resilience to repeated loading will also guide the design of next generation engineered soft materials. This project will include contributions from students from underrepresented groups, including undergraduate students, and will contribute to summer outreach programs.This work will probe multiscale tendon mechanics with a series of clearly defined objectives, namely: 1) characterizing microscale fatigue response and damage of collagen fibrils, 2) developing a macroscopic model for fatigue induced damage, and 3) identifying damage-induced multiscale structural alterations that modify the tenocyte micro-environment. The absence of basic understanding and predictive capabilities for fatigue induced multiscale damage progression in tendon limits the progress of other basic studies including cell mechanics, translational studies, and development of mechanistically informed therapeutics. There is still a substantial gap in understanding the hierarchical cascade of plasticity in tendon during cyclic loading and how it correlates with tendon damage. Starting from collagen fibril experiments and coarse-grained molecular dynamics simulations at the same scale, this work will develop macroscopic theories and models for tendon that will be able to capture the response to tensile fatigue loading including damage initiation and failure. To facilitate predictions at the continuum level, a finite element framework for damage and plasticity at finite deformation will be developed and the simulation results calibrated against macroscopic (tendon-level) experiments for fatigue loading. This work has the potential to provide mechanistic understanding for fatigue induced tendon damage, uncover how alterations to the tenocyte micro-environment drive healing, and provide predictive capabilities that will ultimately inform exercise based treatments to tendinopathy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
肌腱是一种承重组织,在其寿命期内承受数百万次循环。这些强烈的循环负荷可能导致伤害。这项研究将奠定基础,了解复杂性恶化的结构完整性,由于重复加载的钢筋束。肌腱是一种生物材料,具有跨越几个长度尺度的分层“构建块”。因此,重要的是要了解每个尺度下疲劳载荷引起的机械性能和退化。这项工作将使用多尺度实验,计算建模和多尺度模拟的进展来揭示组织的结构损伤如何影响负责组织修复的肌腱细胞的微环境。 揭示肌腱对重复载荷的非凡弹性的机制也将指导下一代工程软材料的设计。这个项目将包括来自代表性不足的群体的学生的贡献,包括本科生,并将有助于夏季外展计划。这项工作将探索多尺度肌腱力学与一系列明确定义的目标,即:1)表征胶原纤维的微观疲劳响应和损伤,2)开发疲劳诱导损伤的宏观模型,和3)鉴定改变腱细胞微环境的损伤诱导的多尺度结构改变。 由于缺乏对疲劳引起的肌腱多尺度损伤进展的基本了解和预测能力,限制了其他基础研究的进展,包括细胞力学、转化研究和机械学治疗方法的开发。在理解循环载荷过程中肌腱的可塑性分级级联以及它与肌腱损伤的关系方面仍然存在很大的差距。 从胶原原纤维实验和粗粒度分子动力学模拟在相同的规模开始,这项工作将开发宏观理论和模型的肌腱,将能够捕捉到拉伸疲劳载荷的响应,包括损伤的启动和失败。为了便于在连续体水平的预测,在有限变形的损伤和塑性有限元框架将开发和模拟结果校准宏观(肌腱级)疲劳载荷实验。这项工作有可能为疲劳引起的肌腱损伤提供机制性的理解,揭示肌腱细胞微环境的改变如何驱动愈合,并提供预测能力,最终为肌腱病的运动治疗提供信息。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational Design of Antimicrobial Active Surfaces via Automated Bayesian Optimization
通过自动贝叶斯优化进行抗菌活性表面的计算设计
- DOI:10.1021/acsbiomaterials.2c01079
- 发表时间:2023
- 期刊:
- 影响因子:5.8
- 作者:Zhai, Hanfeng;Yeo, Jingjie
- 通讯作者:Yeo, Jingjie
Fiber plasticity and loss of ellipticity in soft composites under non-monotonic loading
- DOI:10.1016/j.ijsolstr.2022.111628
- 发表时间:2022-05
- 期刊:
- 影响因子:3.6
- 作者:Fernanda F Fontenele;N. Andarawis-Puri;M. Agoras;Nikolaos Bouklas
- 通讯作者:Fernanda F Fontenele;N. Andarawis-Puri;M. Agoras;Nikolaos Bouklas
Specific osteogenesis imperfecta-related Gly substitutions in type I collagen induce distinct structural, mechanical, and dynamic characteristics
I 型胶原中与成骨不全相关的特定 Gly 取代诱导独特的结构、机械和动态特性
- DOI:10.1039/d1cc05277b
- 发表时间:2021
- 期刊:
- 影响因子:4.9
- 作者:Shi, Haoyuan;Zhao, Liming;Zhai, Chenxi;Yeo, Jingjie
- 通讯作者:Yeo, Jingjie
Stabilized formulation for phase‐field fracture in nearly incompressible hyperelasticity
- DOI:10.1002/nme.7050
- 发表时间:2022-05
- 期刊:
- 影响因子:2.9
- 作者:Ida Ang;N. Bouklas;Bin Li
- 通讯作者:Ida Ang;N. Bouklas;Bin Li
Probing the alignment-dependent mechanical behaviors and time-evolutional aligning process of collagen scaffolds
探讨胶原支架的对齐依赖机械行为和时间演化对齐过程
- DOI:10.1039/d2tb01360f
- 发表时间:2022
- 期刊:
- 影响因子:7
- 作者:Zhai, Chenxi;Sullivan, Patrick A.;Martin, Cassandra L.;Shi, Haoyuan;Deravi, Leila F.;Yeo, Jingjie
- 通讯作者:Yeo, Jingjie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolaos Bouklas其他文献
Onset of swell-induced surface instability of hydrogel layers with depth-wise graded material properties
- DOI:
http://dx.doi.org/10.1016/j.mechmat.2016.11.005 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Zhigen Wu;Nikolaos Bouklas;Yihua Liu;Rui Huang - 通讯作者:
Rui Huang
Local approximate Gaussian process regression for data-driven constitutive models: development and comparison with neural networks
用于数据驱动本构模型的局部近似高斯过程回归:与神经网络的发展和比较
- DOI:
10.1016/j.cma.2021.114217 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:7.300
- 作者:
Jan N. Fuhg;Michele Marino;Nikolaos Bouklas - 通讯作者:
Nikolaos Bouklas
Cohesive instability in elastomers: insights from a crosslinked Van der Waals fluid model
- DOI:
10.1007/s10704-025-00840-8 - 发表时间:
2025-02-04 - 期刊:
- 影响因子:2.500
- 作者:
Samuel C. Lamont;Nikolaos Bouklas;Franck J. Vernerey - 通讯作者:
Franck J. Vernerey
Onset of swell-induced surface instability of hydrogel layers with depth-wise graded material properties
具有深度梯度材料特性的水凝胶层膨胀引起的表面不稳定性的开始
- DOI:
10.1016/j.mechmat.2016.11.005 - 发表时间:
2017-02 - 期刊:
- 影响因子:3.9
- 作者:
Zhigen Wu;Nikolaos Bouklas;Yihua Liu;Rui Huang - 通讯作者:
Rui Huang
NN-EVP: A physics informed neural network-based elasto-viscoplastic framework for predictions of grain size-aware flow response
NN-EVP:一种基于物理信息的神经网络的弹粘塑性框架,用于预测晶粒尺寸感知的流动响应
- DOI:
10.1016/j.ijplas.2024.104072 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:12.800
- 作者:
Adnan Eghtesad;Jingye Tan;Jan Niklas Fuhg;Nikolaos Bouklas - 通讯作者:
Nikolaos Bouklas
Nikolaos Bouklas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolaos Bouklas', 18)}}的其他基金
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 66.38万 - 项目类别:
Standard Grant
相似海外基金
Investigation of the fibre-matrix interface for glass fibre & carbon fibre composites exposed to cryogenic loading and fatigue conditions.
玻璃纤维纤维-基体界面的研究
- 批准号:
2889289 - 财政年份:2023
- 资助金额:
$ 66.38万 - 项目类别:
Studentship
Investigation on the effects of fatigue and creep on the frecture mechanics properties of solid wood
疲劳和蠕变对实木断裂力学性能影响的研究
- 批准号:
23H02277 - 财政年份:2023
- 资助金额:
$ 66.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of bulk material property changes and fatigue strength determination of relaxor-PT piezoelectric materials
弛豫-PT压电材料块体材料性能变化研究及疲劳强度测定
- 批准号:
RGPIN-2015-05791 - 财政年份:2022
- 资助金额:
$ 66.38万 - 项目类别:
Discovery Grants Program - Individual
A combined in vivo/ex vivo experimental platform for the thorough 3D investigation of bone fatigue related microdamage
用于对骨疲劳相关微损伤进行彻底 3D 研究的体内/离体组合实验平台
- 批准号:
RGPIN-2019-04718 - 财政年份:2022
- 资助金额:
$ 66.38万 - 项目类别:
Discovery Grants Program - Individual
Investigation of bulk material property changes and fatigue strength determination of relaxor-PT piezoelectric materials
弛豫-PT压电材料块体材料性能变化研究及疲劳强度测定
- 批准号:
RGPIN-2015-05791 - 财政年份:2021
- 资助金额:
$ 66.38万 - 项目类别:
Discovery Grants Program - Individual
A combined in vivo/ex vivo experimental platform for the thorough 3D investigation of bone fatigue related microdamage
用于对骨疲劳相关微损伤进行彻底 3D 研究的体内/离体组合实验平台
- 批准号:
RGPIN-2019-04718 - 财政年份:2021
- 资助金额:
$ 66.38万 - 项目类别:
Discovery Grants Program - Individual
A combined in vivo/ex vivo experimental platform for the thorough 3D investigation of bone fatigue related microdamage
用于对骨疲劳相关微损伤进行彻底 3D 研究的体内/离体组合实验平台
- 批准号:
RGPIN-2019-04718 - 财政年份:2020
- 资助金额:
$ 66.38万 - 项目类别:
Discovery Grants Program - Individual
Investigation of bulk material property changes and fatigue strength determination of relaxor-PT piezoelectric materials
弛豫-PT压电材料块体材料性能变化研究及疲劳强度测定
- 批准号:
RGPIN-2015-05791 - 财政年份:2020
- 资助金额:
$ 66.38万 - 项目类别:
Discovery Grants Program - Individual
Investigation of Fatigue Performance of Additively Manufactured Freeform Components via Non-destructive Metrology
通过无损计量研究增材制造的自由形状部件的疲劳性能
- 批准号:
2447929 - 财政年份:2020
- 资助金额:
$ 66.38万 - 项目类别:
Studentship
Investigation of vibration fatigue crack growth behavior and vibration fatigue strength improvement by peening
研究振动疲劳裂纹扩展行为和通过喷丸提高振动疲劳强度
- 批准号:
20K14610 - 财政年份:2020
- 资助金额:
$ 66.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists