Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode
合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性
基本信息
- 批准号:2038381
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Renewable energy from wind energy and solar power offers a solution to reducing greenhouse gas emissions and their impact on climate change. Unfortunately, the power that can be generated from these renewable sources is intermittent and typically asynchronous with electrical energy demand. Thus, large-scale energy storage is indispensable for a sustainable economy with reduced reliance on fossil fuels. Representing a promising solution to this energy storage need, aqueous zinc (Zn) metal batteries can store energy at a low cost, with low environmental footprint and high intrinsic safety. However, Zn metal batteries suffer from short cycle life, primarily due to corrosion of the Zn metal anode by water. This corrosion drastically curtails the cycle life of Zn metal batteries and causes a safety concern due to the generation of explosive hydrogen gas—two challenges that require outside-the-box solutions. The recent emergence of highly concentrated “water-in-salt” electrolytes offers a unique opportunity to re-define the stability between the Zn metal anode and the aqueous electrolyte. This project seeks to transform the cyclic stability and increase safe operation of aqueous Zn metal batteries. If successful, this will mark a significant breakthrough for energy storage technologies in the United States. For educational impacts, the investigators will leverage institutional programs their universities to increase the participation of community college students and high school students in summer research experiences. The training of graduate and undergraduate students will feed the workforce need of the next-generation energy sector.The project will elucidate the water stability properties in extremely concentrated solutions by integrating research activities in materials electrochemistry, femtosecond Raman spectroscopy, and ab initio computation. These complementary methods are highly synergistic, providing insights from different vantage points that when integrated can enable deep understanding. In the concentrated electrolytes of study there are few water molecules per solvated ion; therefore, the solvation sheaths are often thinner or incomplete compared to standard dilute solutions. Such solvation structures significantly alter the properties of the solvated ions and the dynamic water molecules as a solvent. Preliminary results have revealed that water molecules exhibit unusually high electrochemical stability against hydrogen evolution and display an intriguing blueshift of vibrational frequencies in stimulated Raman studies. First-principles calculations indicate that there exist peculiar properties of water molecules to be explored in these concentrated solutions. This project will generate an in-depth understanding of the correlation between solvation structures of the concentrated electrolytes and the corresponding stability in contact with the Zn metal anode. The values of such knowledge will transcend different disciplines of physical sciences and engineering and impact a broad range of STEM learners and practitioners in academic and industrial settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
风能和太阳能等可再生能源为减少温室气体排放及其对气候变化的影响提供了解决方案。不幸的是,这些可再生能源产生的电力是间歇性的,通常与电力需求不同步。因此,大规模的能源储存对于减少对化石燃料依赖的可持续经济是必不可少的。水锌(Zn)金属电池是一种很有前途的解决方案,可以以低成本存储能量,具有低环境足迹和高本质安全性。然而,锌金属电池的循环寿命短,主要是由于锌金属阳极被水腐蚀。这种腐蚀极大地缩短了锌金属电池的循环寿命,并且由于产生爆炸性氢气而引起安全问题——这两个挑战需要开箱即用的解决方案。最近出现的高浓度“盐中水”电解质为重新定义锌金属阳极和水电解质之间的稳定性提供了一个独特的机会。该项目旨在改变水锌金属电池的循环稳定性,提高其安全运行。如果成功,这将标志着美国能源存储技术的重大突破。在教育影响方面,研究人员将利用他们大学的机构项目,增加社区大学生和高中生在暑期研究经历中的参与。研究生和本科生的培训将满足下一代能源部门的劳动力需求。该项目将通过整合材料电化学、飞秒拉曼光谱和从头计算的研究活动来阐明极浓溶液中的水稳定性。这些互补的方法是高度协同的,从不同的有利位置提供见解,当整合时可以实现深刻的理解。在研究的浓电解质中,每个溶剂化离子的水分子很少;因此,与标准稀释溶液相比,溶剂化护套通常更薄或不完整。这种溶剂化结构显著地改变了溶剂化离子和作为溶剂的动态水分子的性质。初步结果表明,在受激拉曼研究中,水分子对氢的演化表现出异常高的电化学稳定性,并显示出有趣的振动频率蓝移。第一性原理计算表明,在这些浓溶液中存在着一些有待探索的水分子的特殊性质。该项目将深入了解浓缩电解质的溶剂化结构与与锌金属阳极接触时相应的稳定性之间的关系。这些知识的价值将超越物理科学和工程的不同学科,并影响学术和工业环境中的广泛STEM学习者和实践者。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrolyte Interphases in Aqueous Batteries
水系电池中的电解质界面
- DOI:10.1002/anie.202312585
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sui, Yiming;Ji, Xiulei
- 通讯作者:Ji, Xiulei
Best practices for zinc metal batteries
- DOI:10.1038/s41893-023-01257-8
- 发表时间:2024-01
- 期刊:
- 影响因子:27.6
- 作者:Xiulei Ji;Linda F. Nazar
- 通讯作者:Xiulei Ji;Linda F. Nazar
Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency
- DOI:10.1038/s41893-023-01092-x
- 发表时间:2023-03-23
- 期刊:
- 影响因子:27.6
- 作者:Jiang, Heng;Tang, Longteng;Ji, Xiulei
- 通讯作者:Ji, Xiulei
A perspective of ZnCl2 electrolytes: The physical and electrochemical properties
- DOI:10.1016/j.esci.2021.10.004
- 发表时间:2021-12-01
- 期刊:
- 影响因子:0
- 作者:Ji, Xiulei
- 通讯作者:Ji, Xiulei
Copper metal electrode reversibly hosts fluoride in a 16 m KF aqueous electrolyte
铜金属电极在 16 m KF 水性电解质中可逆地容纳氟化物
- DOI:10.1039/d2cc02978b
- 发表时间:2022
- 期刊:
- 影响因子:4.9
- 作者:Gallagher, Trenton C.;Sandstrom, Sean K.;Wu, Che-Yu;Stickle, William;Fulkerson, Calvin R.;Hagglund, Lindsey;Ji, Xiulei
- 通讯作者:Ji, Xiulei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulei Ji其他文献
Pillared graphite anodes for reversible sodiation
用于可逆钠化的柱柱石墨阳极
- DOI:
10.1088/1361-6528/aac69a - 发表时间:
2018 - 期刊:
- 影响因子:3.5
- 作者:
Hanyang Zhang;Zhifei Li;W. Xu;Yicong Chen;Xiulei Ji;M. Lerner - 通讯作者:
M. Lerner
Anion chemistry in energy storage devices
能量存储设备中的阴离子化学
- DOI:
10.1038/s41570-023-00506-w - 发表时间:
2023-06-14 - 期刊:
- 影响因子:51.700
- 作者:
Zhaodong Huang;Xinliang Li;Ze Chen;Pei Li;Xiulei Ji;Chunyi Zhi - 通讯作者:
Chunyi Zhi
Rechargeable Anion-Shuttle Batteries for Low-Cost Energy Storage
- DOI:
10.1016/j.chempr.2021.02.004 - 发表时间:
2021 - 期刊:
- 影响因子:23.5
- 作者:
Qi Liu;Yizhou Wang;Xu Yang;Dong Zhou;Xianshu Wang;Pauline Jaumaux;Feiyu Kang;Baohua Li;Xiulei Ji;Guoxiu Wang - 通讯作者:
Guoxiu Wang
Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes
非水多价离子和一价离子电池阳极的设计策略
- DOI:
10.1038/s41578-019-0166-4 - 发表时间:
2020-02-10 - 期刊:
- 影响因子:86.200
- 作者:
Matthew Li;Jun Lu;Xiulei Ji;Yanguang Li;Yuyan Shao;Zhongwei Chen;Cheng Zhong;Khalil Amine - 通讯作者:
Khalil Amine
Understanding Lithium Local Environments in LiMn0.5Ni0.5O2 Cathodes: A DFT-Supported 6Li Solid-State NMR Study
了解 LiMn0.5Ni0.5O2 阴极中的锂局部环境:DFT 支持的 6Li 固态 NMR 研究
- DOI:
10.1021/acs.jpcc.1c10470 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Woochul Shin;J. C. García;Anh Vu;Xiulei Ji;H. Iddir;F. Dogan - 通讯作者:
F. Dogan
Xiulei Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulei Ji', 18)}}的其他基金
Mechanistic Investigation of Metal Sulfide Electrodes for High-Energy Non-Aqueous Anion Batteries
高能非水阴离子电池金属硫化物电极的机理研究
- 批准号:
2215645 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAS-Climate:Collaborative Research:Understanding How Electrochemical Cation Trapping in Metal Oxides Enhances Subsequent Reversible Insertion of Anions in Forming Metal Oxyhalides
CAS-气候:合作研究:了解金属氧化物中的电化学阳离子捕获如何增强随后形成金属卤氧化物时阴离子的可逆插入
- 批准号:
2221645 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries
合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学
- 批准号:
2004636 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAREER: Carbon Anodes in Potassium-Ion Batteries
职业:钾离子电池中的碳阳极
- 批准号:
1551693 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Studies of Na-Ion Storage in Hard Carbon
合作研究:硬碳中钠离子储存的基础研究
- 批准号:
1507391 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
- 批准号:
2313860 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300891 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
- 批准号:
2307188 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Role of Natural Aerosols in Modulating Boundary Layer Clouds and Precipitation in the Southern Ocean
合作研究:阐明天然气溶胶在调节南大洋边界层云和降水中的作用
- 批准号:
2246489 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
- 批准号:
2313861 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the roles of biogenic exudates in the cycling and uptake of rare earth elements
合作研究:阐明生物渗出物在稀土元素循环和吸收中的作用
- 批准号:
2221913 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
- 批准号:
2319494 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2401851 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
- 批准号:
2307189 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant