Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries
合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学
基本信息
- 批准号:2004636
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Summary With this collaborative project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, two research groups at the University of California Riverside and Oregon State University investigate fundamental aspects of how fast diffusion of hydrogen ions occurs in confined networks of water. When metal ions move though water, they push past the water molecules as they go. It is already known that hydrogen ions migrate in a completely different manner and faster. The researchers study in detail how this process works and what makes it many times faster than the diffusion of metal ions, for example what makes it faster than that of lithium ions in batteries. Several factors can enable very fast, hydrogen-ion batteries that have the potential to be charged and discharged for millions of cycles, and so present a remarkable opportunity to realize the Holy Grail of electrochemical energy storage: to achieve simultaneously the energy densities of batteries and the power and cycle life of capacitors. The abundance of hydrogen also makes hydrogen-ion batteries a promising candidate for the grid-level storage batteries that are needed to provide a continuous and dependable electricity supply from intermittent power sources such as wind and solar energy. Advancing knowledge and the associated technology in these areas aids the United States to remain economically competitive. Additionally, the project produces educational videos targeted to students and the broader public that present concepts in energy storage and its role in society. Training of graduate and undergraduate students with the skills needed to enter the workforce in the energy technology sector and additional outreach activities take place at both institutions.Technical Summary The existing knowledge of battery chemistry is built upon the understanding that the kinetics are dictated by desolvation and vehicular diffusion of the working ion. The research in this collaborative project, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, explores a new paradigm of battery chemistry where by using protons as the working ions with an aqueous electrolyte, charge conduction does not rely on the long-range physical migration of ions through the host electrode but instead obtains long-range movement of charge via the Grotthuss mechanism of proton displacement along the crystal water network in an electrode. Transport of protons via the Grotthuss mechanism involves the movement of a quasiparticle defect in the bonding topology of water. It is fundamentally different from the vehicular transport of metal cations and could give rise to ultra-fast insertion kinetics and the ability to provide batteries that deliver high power at ultra-low temperatures. The project focuses on mechanisms of proton transport and storage in Turnbull blue and its family of analog compounds. These systems have an open and defected crystal structure that hosts an internal network of crystal water. The crystal water network provides pathways for Grotthuss diffusion, making the kinetics of proton transport and storage exceedingly fast, even at temperatures well below the freezing temperature of water. This project tests the central hypothesis that the transport performance of protons in this system depends on the topology imposed on the H-bonding network of crystal water by the surrounding host framework. To test this, the researchers a. determine the topological characteristics of the water network in Prussian blue analogs, from the atomic to the mesoscopic scale, and the role they play in Grotthuss topochemistry; b. elucidate the mechanisms of proton insertion, storage, and transport in the water network within Prussian blue analogs at all states of charge; and c. formulate testable design principles that can guide the development of new reticular materials for proton transport and storage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该合作项目的非技术摘要得到了NSF材料研究部的固态和材料化学计划的支持,加利福尼亚大学河滨大学和俄勒冈州立大学的两个研究小组研究了氢离子的基本方面的基本方面。当金属离子移动水时,它们会随着水分子推动。众所周知,氢离子以完全不同的方式迁移,更快。研究人员详细研究了此过程的工作原理以及使其比金属离子扩散快的速度,例如,它比电池中锂离子的速度快。几个因素可以实现非常快速的氢气电池,这些电池有可能为数百万个周期充电和排放,因此为实现电化学能源存储的圣杯提供了一个了不起的机会:同时实现电池的能量密度,以及推能者的力量和循环寿命。丰富的氢气还使氢气电池成为网格级存储电池的有前途的候选者,这些储存电池是为了提供与风和太阳能等间歇性电源提供连续且可靠的电力供应。推进知识和相关的技术在这些领域有助于美国保持经济竞争力。此外,该项目还制作了针对学生和更广泛的公众的教育视频,这些视频及其在社会中的作用及其作用。培训研究生和本科生,并在能源技术领域进入劳动力所需的技能,并在两个机构进行其他外展活动。技术总结构建了电池化学的现有知识,这是基于理解动力学的理解,即动力学是由工作离子的脱溶剂和车辆扩散所决定的。该协作项目中的研究得到了NSF材料研究部的固态和材料化学计划的支持电极。质子通过Grotthuss机制的运输涉及在水的粘结拓扑中的准颗粒缺陷的运动。它与金属阳离子的车辆运输根本不同,并且可能会产生超快速的插入动力学,并能够提供在超低温度下提供高功率的电池。该项目着重于特恩布尔蓝色及其模拟化合物家族中质子运输和存储的机制。这些系统具有开放且缺陷的晶体结构,可容纳内部水晶水网络。水晶水网络提供了谷物扩散的途径,即使在温度远低于水温度的温度下,质子运输和存储的动力学也非常快。该项目检验了一个中心假设,即该系统中质子的运输性能取决于周围的宿主框架上施加在水晶水的H键网络上的拓扑。为了测试这一点,研究人员a。确定从原子到介质量表的普鲁士蓝色类似物中水网络的拓扑特征,及其在Grotthuss topochemistion中所起的作用; b。在所有电荷状态下,阐明了普鲁士蓝色类似物中水网络中质子插入,存储和运输的机制;和c。制定可测试的设计原理,可以指导开发用于质子运输和存储的新的网状材料。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rechargeable anion-shuttle batteries for low-cost energy storage
用于低成本储能的可充电阴离子穿梭电池
- DOI:10.1016/j.chempr.2021.02.004
- 发表时间:2021-08-12
- 期刊:
- 影响因子:23.5
- 作者:Liu, Qi;Wang, Yizhou;Wang, Guoxiu
- 通讯作者:Wang, Guoxiu
Anticatalytic Strategies to Suppress Water Electrolysis in Aqueous Batteries
- DOI:10.1021/acs.chemrev.1c00191
- 发表时间:2021-04-26
- 期刊:
- 影响因子:62.1
- 作者:Sui, Yiming;Ji, Xiulei
- 通讯作者:Ji, Xiulei
Low-Temperature Aqueous Batteries: Challenges and Opportunities
低温水系电池:挑战与机遇
- DOI:10.1149/1945-7111/ac53cd/meta
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Yiming Sui, Mingliang Yu
- 通讯作者:Yiming Sui, Mingliang Yu
From Copper to Basic Copper Carbonate: A Reversible Conversion Cathode in Aqueous Anion Batteries
从铜到碱式碳酸铜:水系阴离子电池中的可逆转换阴极
- DOI:10.1002/anie.202203837
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gallagher, Trenton C.;Wu, Che‐Yu;Lucero, Marcos;Sandstrom, Sean K.;Hagglund, Lindsey;Jiang, Heng;Stickle, William;Feng, Zhenxing;Ji, Xiulei
- 通讯作者:Ji, Xiulei
Prussian Blue Analogues as Electrodes for Aqueous Monovalent Ion Batteries
- DOI:10.1007/s41918-020-00088-x
- 发表时间:2021-03-03
- 期刊:
- 影响因子:31.3
- 作者:Qiu, Shen;Xu, Yunkai;Ji, Xiulei
- 通讯作者:Ji, Xiulei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulei Ji其他文献
Pillared graphite anodes for reversible sodiation
用于可逆钠化的柱柱石墨阳极
- DOI:
10.1088/1361-6528/aac69a - 发表时间:
2018 - 期刊:
- 影响因子:3.5
- 作者:
Hanyang Zhang;Zhifei Li;W. Xu;Yicong Chen;Xiulei Ji;M. Lerner - 通讯作者:
M. Lerner
Understanding Lithium Local Environments in LiMn0.5Ni0.5O2 Cathodes: A DFT-Supported 6Li Solid-State NMR Study
了解 LiMn0.5Ni0.5O2 阴极中的锂局部环境:DFT 支持的 6Li 固态 NMR 研究
- DOI:
10.1021/acs.jpcc.1c10470 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Woochul Shin;J. C. García;Anh Vu;Xiulei Ji;H. Iddir;F. Dogan - 通讯作者:
F. Dogan
Gentle reduction of SBA-15 silica to its silicon replica with retention of morphology
将 SBA-15 二氧化硅温和还原为其硅复制品,并保留形态
- DOI:
10.1039/c3ra46557h - 发表时间:
2014 - 期刊:
- 影响因子:3.9
- 作者:
Xiulei Ji;Guang He;C. Andrei;L. Nazar - 通讯作者:
L. Nazar
Ultra-Fast Ammonium-Storage: Strong H-Bonding Between NH4 + and Bilayered V2O5
超快速氨储存:NH4 和双层 V2O5 之间的强氢键
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:23.5
- 作者:
Shengyang Dong;Woochul Shin;Heng Jiang;Xianyong Wu;Zhifei Li;John Holoubek;William F. Stickle;Baris Key;Cong Liu;Jun Lu;P. Alex Greaney;Xiaogang Zhang;Xiulei Ji - 通讯作者:
Xiulei Ji
Creation of a new type of ion exchange material for rapid, high-capacity, reversible and selective ion exchange without swelling and entrainment† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04507j
创建一种新型离子交换材料,用于快速、高容量、可逆和选择性离子交换,无需膨胀和夹带† †提供电子补充信息 (ESI),请参阅 DOI:10.1039/c5sc04507j。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:8.4
- 作者:
Baiyan Li;Yiming Zhang;Dingxuan Ma;Zhenyu Xing;Tianliang Ma;Zhan Shi;Xiulei Ji;Shengqian Ma - 通讯作者:
Shengqian Ma
Xiulei Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulei Ji', 18)}}的其他基金
Mechanistic Investigation of Metal Sulfide Electrodes for High-Energy Non-Aqueous Anion Batteries
高能非水阴离子电池金属硫化物电极的机理研究
- 批准号:
2215645 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAS-Climate:Collaborative Research:Understanding How Electrochemical Cation Trapping in Metal Oxides Enhances Subsequent Reversible Insertion of Anions in Forming Metal Oxyhalides
CAS-气候:合作研究:了解金属氧化物中的电化学阳离子捕获如何增强随后形成金属卤氧化物时阴离子的可逆插入
- 批准号:
2221645 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode
合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性
- 批准号:
2038381 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Carbon Anodes in Potassium-Ion Batteries
职业:钾离子电池中的碳阳极
- 批准号:
1551693 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Studies of Na-Ion Storage in Hard Carbon
合作研究:硬碳中钠离子储存的基础研究
- 批准号:
1507391 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
基于ipRGCs功能的定量评估阐明其与儿童近视发病风险关联的前瞻性队列研究
- 批准号:81803258
- 批准年份:2018
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
结合影像质谱技术、代谢及脂质组学研究阐明黄芩调控胆固醇代谢转化机理
- 批准号:81503222
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
合成生物学在阐明药物代谢酶及转运体相互关系研究中的应用
- 批准号:81473278
- 批准年份:2014
- 资助金额:65.0 万元
- 项目类别:面上项目
利用表面离子共振技术模拟白细胞穿越血管内皮(TEM)过程,阐明CD47调节白细胞TEM机制的研究
- 批准号:81302611
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
以星形胶质细胞为靶点阐明慢性疼痛机制:DREAM信号通路的研究
- 批准号:31070974
- 批准年份:2010
- 资助金额:37.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
- 批准号:
2314719 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
- 批准号:
2314720 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
- 批准号:
2204075 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
- 批准号:
2204074 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Elucidation of mutant p53-medidated mechanisms in promoting metastatic esophageal cancer
阐明突变型 p53 介导的促进转移性食管癌的机制
- 批准号:
10689716 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别: