Collaborative Research: CPS: Medium: Constraint Aware Planning and Control for Cyber-Physical Systems
协作研究:CPS:中:网络物理系统的约束感知规划和控制
基本信息
- 批准号:2039054
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this work is to generate new fundamental science for computer controlled complex physical systems, a broad class of cyber-physical systems (CPS) and demonstrate this science in aerial vehicles and walking robots. The new science enables autonomous planning and control in the presence of failures and abrupt changes in system variables. A framework for the design of algorithms that exploit awareness of the physical and design constraints to autonomously self-adapt their motion plan and control actions will be generated. The approach exploits elements from geometry, adaptive control, and hybrid control to advance the knowledge on modeling, planning, and design of CPS with constraints, non-smooth, and intertwined continuous and discrete dynamics. Unlike current approaches, which separate the task associated with planning the motion from the design of the algorithm used for control, the algorithms to emerge from this project self-learn and self-adapt in real time to cope with unexpected changes in motion and specification constraints so as to enable autonomous systems to perform robustly and safely, and degrade gracefully under failure conditions. Specifically, the new algorithms will learn and monitor the physical and design constraints in real time and adapt both planner and controller by selecting the appropriate constraints to enforce, with robustness and safety guarantees. The capabilities of the new tools will be demonstrated on multi-legged robots in harsh environments that make them prone to failures, and on aerial vehicles in contested/adversarial environments.The proposed plan contributes to Science of Cyber-Physical Systems by addressing modeling, motion planning, and design of CPS with constraints, non-smooth, and intertwined continuous and discrete dynamics. The merits of the proposal fall into four broad categories: (i) a framework to mathematically formulate learning-based planning and control for CPS with awareness of its constraints, (ii) novel architectures that lead to robust adaptive constraint satisfaction, (iii) deep understanding of roles and priorities of system constraints in CPS, and (iv) tools and design techniques that permit engineers to deploy constraint aware algorithms. The results of this work are broad in their application to all kinds of CPS that require planning and control, in particular, autonomous systems in transportation (air and ground). Synergistic collaborations with researchers at Samsung, the start-up Ghost Robotics, and at the University of Bologna are instrumental in disseminating the application of our results to industry and academia. A synergistic outreach program at UCSC and the University of Michigan impacts high school students and teachers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工作的目标是为计算机控制的复杂物理系统,一个广泛的网络物理系统(CPS)产生新的基础科学,并在飞行器和步行机器人中展示这门科学。 新的科学使自主规划和控制存在的故障和系统变量的突然变化。 一个框架的算法,利用意识的物理和设计约束,自主自适应他们的运动计划和控制行动的设计将产生。 该方法利用几何,自适应控制和混合控制的元素,推进知识的建模,规划和CPS的设计与约束,非光滑,交织的连续和离散动态。 与当前的方法不同,这些方法将与规划运动相关联的任务与用于控制的算法的设计相分离,从该项目中出现的算法在真实的时间内自学习和自适应,以科普运动和规范约束中的意外变化,从而使自主系统能够稳健和安全地执行,并在故障条件下优雅地降级。 具体而言,新算法将学习和监测物理和设计约束在真实的时间和适应规划器和控制器通过选择适当的约束,以执行,具有鲁棒性和安全性保证。 新工具的功能将在多腿机器人上进行演示,这些机器人在恶劣的环境中容易出现故障,以及在有争议/对抗性的环境中的飞行器上。拟议的计划通过解决建模,运动规划和CPS设计的约束,非平滑和交织的连续和离散动力学,为网络物理系统科学做出贡献。该建议的优点分为四大类:(i)一个框架,以数学方式制定基于学习的规划和控制CPS的意识,其约束,(ii)新的架构,导致强大的自适应约束满足,(iii)深入了解的角色和优先级的系统约束CPS,和(iv)工具和设计技术,允许工程师部署约束感知算法。这项工作的结果是广泛的,在他们的应用程序,需要规划和控制,特别是在运输(空中和地面)的自主系统的各种CPS。与三星、初创企业Ghost Robotics和博洛尼亚大学的研究人员的协同合作有助于将我们的成果应用于工业和学术界。 UCSC和密歇根大学的一个协同外展计划影响了高中学生和教师。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniting Nesterov’s Accelerated Gradient Descent and the Heavy Ball Method for Strongly Convex Functions with Exponential Convergence Rate
结合 Nesterov 的加速梯度下降法和重球法来求解具有指数收敛率的强凸函数
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hustig-Schultz, D.;Sanfelice, R.G.
- 通讯作者:Sanfelice, R.G.
A Self-Triggered Control Strategy to Guarantee Forward Invariance
保证前向不变性的自触发控制策略
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kooi, D.;Sanfelice, R.G.
- 通讯作者:Sanfelice, R.G.
Robust Finite-Time Parameter Estimation for Linear Dynamical Systems
线性动力系统的鲁棒有限时间参数估计
- DOI:10.1109/cdc45484.2021.9683268
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Johnson, R.;Saoud, A.;Sanfelice, R.
- 通讯作者:Sanfelice, R.
Hybrid Concurrent Learning for Hybrid Linear Regression
混合线性回归的混合并发学习
- DOI:10.1109/cdc51059.2022.9992473
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Johnson, Ryan S.;Sanfelice, Ricardo G.
- 通讯作者:Sanfelice, Ricardo G.
A Totally Asynchronous Block-Based Heavy Ball Algorithm for Convex Optimization
- DOI:10.23919/acc55779.2023.10156324
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Dawn M. Hustig-Schultz;Katherine R. Hendrickson;M. Hale;R. Sanfelice
- 通讯作者:Dawn M. Hustig-Schultz;Katherine R. Hendrickson;M. Hale;R. Sanfelice
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Sanfelice其他文献
Coupling Flow and Jump Observers for Hybrid Systems with Known Jump Times
具有已知跳跃时间的混合系统的耦合流动和跳跃观测器
- DOI:
10.1016/j.ifacol.2023.10.522 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Gia Quoc Bao Tran;Pauline Bernard;Ricardo Sanfelice - 通讯作者:
Ricardo Sanfelice
A Data-Driven Approach for Certifying Asymptotic Stability and Cost Evaluation for Hybrid Systems
用于证明混合系统渐近稳定性和成本评估的数据驱动方法
- DOI:
10.1145/3641513.3650122 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Carlos A. Montenegro G.;S. Leudo;Ricardo Sanfelice - 通讯作者:
Ricardo Sanfelice
Ricardo Sanfelice的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Sanfelice', 18)}}的其他基金
Collaborative Research: CPS: Frontier: Computation-Aware Algorithmic Design for Cyber-Physical Systems
合作研究:CPS:前沿:网络物理系统的计算感知算法设计
- 批准号:
2111688 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Hybrid Predictive Control for Distributed Multi-agent Systems
分布式多智能体系统的混合预测控制
- 批准号:
1710621 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Computationally Aware Cyber-Physical Systems
CPS:协同:协作研究:计算感知网络物理系统
- 批准号:
1544396 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Enabling Design of Future Smart Grids via Input/Output Hybrid Systems Tools
职业:通过输入/输出混合系统工具实现未来智能电网的设计
- 批准号:
1450484 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Enabling Design of Future Smart Grids via Input/Output Hybrid Systems Tools
职业:通过输入/输出混合系统工具实现未来智能电网的设计
- 批准号:
1150306 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Workshop: 1st Southwest Workshop on Theory and Applications of Cyber-Physical Systems
研讨会:第一届西南信息物理系统理论与应用研讨会
- 批准号:
1041704 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2414176 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant














{{item.name}}会员




