CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility

CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用

基本信息

  • 批准号:
    2312092
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This Cyber-Physical Systems (CPS) project aims at designing theories and algorithms for scalable multi-agent planning and control to support safety-critical autonomous eVTOL aircraft in high-throughput, uncertain and dynamic environments. Urban Air Mobility (UAM) is an emerging air transportation mode in which electrical vertical take-off and landing (eVTOL) aircraft will safely and efficiently transport passengers and cargo within urban areas. Guidance from the White House, the National Academy of Engineering, and the US Congress has encouraged fundamental research in UAM to maintain the US global leadership in this field. The success of UAM will depend on the safe and robust multi-agent autonomy to scale up the operations to high-throughput urban air traffic. Learning-based techniques such as deep reinforcement learning and multi-agent reinforcement learning are developed to support planning and control for these eVTOL vehicles. However, there is a major challenge to provide theoretical safety and robustness guarantees for these learning-based neural network in-the-loop models in multi-agent autonomous UAM applications. In this project, the researchers will collaborate with committed government and industry partners on the use-case-inspired fundamental research, with a focus on promoting safety and reliability of AI, machine learning and autonomy in students with diverse backgrounds. The technical objectives of this project include (1) Safety and Robustness of Single-Agent Reinforcement Learning: in order to address the “safety critical” UAM challenge, the PIs plan the min-max optimization for single agent reinforcement learning to formally build sufficient safety margin, constrained reinforcement learning to formulate safety as physical constraints in state and action spaces, and the novel cautious reinforcement learning that uses variational policy gradient to plan the safest aircraft trajectory with minimum distributional risk; (2) Safety and Robustness of Multi-Agent Reinforcement Learning: in order to address the “heterogeneous agents and scalability” challenge, a novel federated reinforcement learning framework where a central agent coordinates with decentralized safe agents to improve traffic throughput while guaranteeing safety, and a scaling mechanism to accommodate a varying number of decentralized aircraft; (3) Safety and Robustness from Simulations to the Real World: in order to address the “high-dimensionality and environment uncertainty” challenge, the researchers will focus on the agents’ policy robustness under distribution shift and fast adaptation from simulation to the real world. Specifically, value-targeted model learning to incorporate domain knowledge such as the aircraft and environment physics, and a safe adaptation mechanism after the RL model is deployed online for flight testing or execution is planned.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个网络物理系统(CPS)项目旨在设计可扩展的多智能体规划和控制的理论和算法,以支持高吞吐量、不确定和动态环境中的安全关键自主eVTOL飞机。城市空中机动性(UAM)是一种新兴的航空运输方式,电动垂直起降(EVTOL)飞机在城市区域内安全、高效地运送乘客和货物。白宫、美国国家工程院和美国国会的指导鼓励了UAM的基础研究,以保持美国在该领域的全球领先地位。UAM的成功将取决于安全和强大的多代理自治,以将运营扩大到高吞吐量的城市空中交通。基于学习的技术,如深度强化学习和多智能体强化学习,被开发来支持这些eVTOL车辆的规划和控制。然而,在多智能体自主UAM应用中,为这些基于学习的神经网络在环模型提供理论上的安全性和健壮性保证是一个重大挑战。在这个项目中,研究人员将与承诺的政府和行业合作伙伴合作,开展以用例为灵感的基础研究,重点是促进人工智能、机器学习和不同背景学生的自主性的安全和可靠性。本项目的技术目标包括:(1)单智能体强化学习的安全性和稳健性:为了解决“安全关键”的UAM挑战,PI计划对单智能体强化学习进行最小-最大优化以形式化地建立足够的安全裕度,约束强化学习将安全性表达为状态和动作空间中的物理约束,以及新的谨慎强化学习,它使用变化的策略梯度来规划最安全的飞机轨迹并使分布风险最小;(2)多智能体强化学习的安全性和健壮性:为了解决“异质智能体和可伸缩性”的挑战,提出了一种新型的联邦强化学习框架,其中中央智能体与分散的安全智能体进行协调,以提高交通吞吐量,同时保证安全,并建立了一个缩放机制,以适应不同数量的分散式飞机;(3)从模拟到真实世界的安全性和健壮性:为了应对“高维和环境不确定性”的挑战,研究人员将重点关注分布转移下的智能体的策略健壮性以及从模拟到真实世界的快速适应。具体地说,计划进行以价值为目标的模型学习,以纳入飞机和环境物理等领域知识,并在RL模型在线部署进行飞行测试或执行后建立安全适应机制。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Wei其他文献

Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries
结构畸变诱导单斜六氰基铁酸镍作为钠离子电池的高性能正极
  • DOI:
    10.1002/aenm.201803158
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Yue Xu;Jing Wan;Li Huang;Mingyang Ou;Chenyang Fan;Peng Wei;Jian Peng;Yi Liu;Yuegang Qiu;Xueping Sun;Chun Fang;Qing Li;Jiantao Han;Yunhui Huang;José Antonio Alonso;Yusheng Zhao
  • 通讯作者:
    Yusheng Zhao
Wave tank experiments on the power capture of a float-type wave energy device with a breakwater
带防波堤的浮式波浪能装置的能量捕获造浪池实验
Identifying Electrocatalytic Sites of the Nanoporous Copper-Ruthenium Alloy for Hydrogen Evolution Reaction in Alkaline Electrolyte
碱性电解质中析氢反应的纳米孔铜钌合金电催化位点的识别
  • DOI:
    10.1021/acsenergylett.9b02374
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Wu Qiuli;Luo Min;Han Jiuhui;Peng Wei;Zhao Yang;Chen Dechao;Peng Ming;Liu Ji;de Groot Frank M. F.;Tan Yongwen
  • 通讯作者:
    Tan Yongwen
Distributed Precoding for BER Minimization With PAPR Constraint in Uplink Massive MIMO Systems
上行链路大规模 MIMO 系统中具有 PAPR 约束的 BER 最小化分布式预编码
  • DOI:
    10.1109/access.2017.2707396
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Peng Wei;Zheng Lu;Chen Da;Ni Chunxing;Jiang Tao
  • 通讯作者:
    Jiang Tao
Ultrahigh and field-independent energy storage efficiency of (1-x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-xBi(Mg0.5Ti0.5)O3 ceramics
(1-x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-xBi(Mg0.5Ti0.5)O3陶瓷的超高且与场无关的储能效率
  • DOI:
    10.1016/j.ceramint.2020.09.206
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Pan Yang;Lingxia Li;Shihui Yu;Peng Wei;Kangli Xu
  • 通讯作者:
    Kangli Xu

Peng Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Wei', 18)}}的其他基金

CAREER: Tunable superconductor materials for quantum information processing using pairs of Majorana zero modes
职业:使用马约拉纳零模式对进行量子信息处理的可调谐超导材料
  • 批准号:
    2046648
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Safe and Scalable Learning-based Control for Autonomous Air Mobility
职业:安全且可扩展的基于学习的自主空中交通控制
  • 批准号:
    2047390
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CRII: CPS: Towards an Intelligent Low-Altitude UAS Traffic Management System
CRII:CPS:迈向智能低空无人机交通管理系统
  • 批准号:
    1565979
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了