EAGER: Collaborative Research: Feasibility of Self-Propelled Nanoparticles for Heat Transfer Enhancement
EAGER:合作研究:自推进纳米颗粒增强传热的可行性
基本信息
- 批准号:2039262
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The performance of many devices, such as computers, is limited by the ability to remove heat from critical components. Improving heat removal technologies will enable faster, smaller, more reliable, and lower-cost devices. The research conducted under this award will focus on the enhancement of heat transfer fluids resulting from active “stirring” elements in the form of self-propelled microparticles. Theory indicates that substantial improvements may be possible. If these predictions can be realized, the resulting technological advances could lead to transformative improvements in the design of data centers, electric vehicle batteries, solar panels, medical devices and other such devices, potentially leading to cost savings of several billion dollars per year.The research objective of this project is to measure the effect on heat transfer of the addition of self-propelled microparticles to coolant liquids. A series of heat transfer measurements will be obtained using two different designs of self-propelled microparticles that have already been shown to generate bulk fluid mixing and active turbulence. The measurement of thermal conductivity in a microstirred liquid poses unique challenges. The figure of merit for heat transfer enhancement used in this work is the effective thermal conductivity, which is defined as the thermal conductivity of a fictitious stagnant liquid that permits the same heat transfer rates as the self-propelled microparticle suspensions. Enhancement is defined here as the increase in effective thermal conductivity relative to the thermal conductivity of the liquid containing identical particles but with their self-propelled motion deactivated. Measurements will be taken over a range of particle diameters, speeds, and volume fractions to quantify the effect of these parameters on effective thermal conductivity. Experimental results will be compared to finite-element simulations to facilitate comparison with extant theory and identify the thermal-fluid transport phenomena underlying enhancement. The intellectual merit of this research lies in a more comprehensive understanding of the thermal-fluid behavior of fluid-particle mixtures under conditions where the particles propel themselves through the fluid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多设备(如计算机)的性能受到关键部件散热能力的限制。改进的散热技术将使设备更快、更小、更可靠、成本更低。在该奖项下进行的研究将侧重于由主动“搅拌”元素以自推进微粒的形式产生的传热流体的增强。理论表明,实质性的改进是可能的。如果这些预测能够实现,由此产生的技术进步可能导致数据中心、电动汽车电池、太阳能电池板、医疗设备和其他此类设备的设计出现变革性改进,每年可能节省数十亿美元的成本。本课题的研究目的是测量在冷却液中加入自走微粒对传热的影响。一系列的传热测量将使用两种不同设计的自推进微粒子,这两种设计已经被证明可以产生大量流体混合和主动湍流。微搅拌液体导热系数的测量提出了独特的挑战。在这项工作中使用的传热增强的优点数字是有效导热系数,它被定义为虚拟停滞液体的导热系数,该液体允许与自推进微粒悬浮液相同的传热速率。增强在这里被定义为有效导热系数相对于含有相同颗粒但其自推进运动停止的液体导热系数的增加。测量将采取在颗粒直径,速度和体积分数的范围内,以量化这些参数对有效导热系数的影响。实验结果将与有限元模拟结果进行比较,以便与现有理论进行比较,并确定增强背后的热流体输运现象。这项研究的智力价值在于更全面地理解流体-颗粒混合物在颗粒推动自己通过流体的条件下的热流体行为。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal transport dynamics in active heat transfer fluids (AHTF)
- DOI:10.1063/5.0047283
- 发表时间:2019-05
- 期刊:
- 影响因子:3.2
- 作者:W. Peng;A. Chandra;P. Keblinski;J. Moran
- 通讯作者:W. Peng;A. Chandra;P. Keblinski;J. Moran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Moran其他文献
Visual fields of cats reared with one eye intorted
- DOI:
10.1016/0006-8993(79)90812-6 - 发表时间:
1979-09-28 - 期刊:
- 影响因子:
- 作者:
Barbara Gordon;Jeffrey Moran;Joelle Presson - 通讯作者:
Joelle Presson
Jeffrey Moran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Moran', 18)}}的其他基金
Collaborative Research: ISS: Colloidal Microflyers: Observation and Characterization of (Self-)Thermophoresis through Air in Microgravity
合作研究:ISS:胶体微飞行器:微重力下空气(自)热泳的观察和表征
- 批准号:
2323010 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant














{{item.name}}会员




