EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
基本信息
- 批准号:2039289
- 负责人:
- 金额:$ 14.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the exponential increase in cybercrimes in recent years, the need for Computer Forensics and Digital Evidence (CFDE) expertise is rapidly growing. A qualified CFDE professional needs to have deep knowledge of digital forensic evidence identification, acquisition, and examination, as well as the ability to present and explain digital forensic evidence in courtrooms. However, there are major barriers to instilling the core knowledge of CFDE and practice of cyber investigation techniques in a diverse body of interested students. For example, a systematic approach for collecting, organizing, and analyzing digital forensic evidence is lacking. This project will engage novel interdisciplinary perspectives, including artificial intelligence (AI), cybersecurity, criminal justice, and computer science to re-examine the emerging CFDE field with a formal approach. This project will then explore visualized and explainable AI to improve students’ learning experience in digital forensics education at Minority-Serving Institutions (MSIs) including Historically Black Colleges and Universities (HBCUs).The project brings together faculty from the University of Baltimore, an MSI, Bowie State University, one of the oldest HBCUs in Maryland, and the University of Missouri Kansas City, who have synergistic expertise in digital forensics, cybersecurity, AI, law, and computer science. The project will leverage graph-based AI models to provide students with visualized depictions of forensic evidence, the patterns of evidence, and the connections among the evidence. It will also explore explainable AI to support the development of forensic evidence that is accountable and presentable to courts, and develop AI-aided CFDE instructional materials. The project will address research questions at the intersection of AI, CFDE, and education including the following: (a) How do graph-based models store, retrieve, and present digital forensic evidence? (b) How do graph-based AI models discover new evidence and to what extent should we trust AI-discovered evidence/patterns? (c) How can knowledge and techniques of AI-assisted investigation be infused into CFDE instructional materials, and to what extent do the materials improve students’ learning experiences? Learning materials will be made available to both the CFDE and data science communities. This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着近年来网络犯罪呈指数级增长,对计算机取证和数字证据(CFDE)专业知识的需求迅速增长。一名合格的CFDE专业人员需要对数字法医证据的识别、获取和审查有深入的了解,以及在法庭上展示和解释数字法医证据的能力。然而,在向不同的感兴趣的学生群体灌输CFDE的核心知识和实践网络调查技术方面存在重大障碍。例如,缺乏收集、组织和分析数字法医证据的系统方法。该项目将采用新颖的跨学科视角,包括人工智能(AI)、网络安全、刑事司法和计算机科学,以正式的方法重新审视新兴的CFDE领域。该项目将探索可视化和可解释的人工智能,以改善学生在少数族裔服务机构(MSI)(包括历史上的黑人学院和大学(HBCU))的数字取证教育中的学习体验。该项目汇集了来自巴尔的摩大学、MSI、鲍伊州立大学(马里兰州最古老的HBCU之一)和密苏里堪萨斯城大学的教师,他们在数字取证、网络安全、人工智能、法律和计算机科学方面拥有协同专业知识。该项目将利用基于图形的人工智能模型为学生提供法医证据、证据模式以及证据之间的联系的可视化描述。它还将探索可解释的人工智能,以支持开发对法院负责和可向法院出示的法医证据,并开发人工智能辅助的CFDE教学材料。该项目将解决人工智能、CFDE和教育交叉领域的研究问题,包括以下内容:(A)基于图形的模型如何存储、检索和呈现数字法医证据?(B)基于图形的人工智能模型如何发现新的证据,以及我们应该在多大程度上信任人工智能发现的证据/模式?(C)如何将人工智能辅助调查的知识和技术灌输到CFDE教学材料中,以及这些材料在多大程度上改善了学生的学习体验?将向CFDE和数据科学界提供学习材料。该项目得到了安全和值得信赖的网络空间(SATC)计划的一项特别倡议的支持,该计划旨在促进网络安全、人工智能和教育领域之间新的、以前从未探索过的合作。SATC计划与联邦网络安全研究和发展战略计划和国家隐私研究战略保持一致,以保护和维护网络系统日益增长的社会和经济效益,同时确保安全和隐私。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weifeng Xu其他文献
Continuous Separation for Propranolol by Fractional Extraction: Symmetric Separation and Asymmetric Separation
通过分级萃取连续分离普萘洛尔:对称分离和不对称分离
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.4
- 作者:
Panliang Zhang;Weifeng Xu;Kewen Tang - 通讯作者:
Kewen Tang
Modeling multiple chemical equilibrium in chiral extraction of metoprolol enantiomers from single-stage extraction to fractional extraction
模拟美托洛尔对映体手性萃取中从单级萃取到分级萃取的多重化学平衡
- DOI:
10.1016/j.ces.2017.11.007 - 发表时间:
2018-02 - 期刊:
- 影响因子:4.7
- 作者:
Panliang Zhang;Shichuan Wang;Kewen Tang;Weifeng Xu;Fan He;Yunren Qiu - 通讯作者:
Yunren Qiu
Study on kinetics of reactive extraction of propranolol enantiomers by multiple linear regression method
多元线性回归法反应萃取普萘洛尔对映体的动力学研究
- DOI:
10.1002/apj.2097 - 发表时间:
2017-05 - 期刊:
- 影响因子:1.8
- 作者:
Panliang Zhang;Qing Cheng;Kewen Tang;Yunren Qiu;Weifeng Xu;Pan Jiang;Guilin Dai - 通讯作者:
Guilin Dai
Joint Optimization of Forward Contract and Operating Rules for Cascade Hydropower Reservoirs
梯级水库远期合同与运行规则联合优化
- DOI:
10.1061/(asce)wr.1943-5452.0001510 - 发表时间:
2022-02 - 期刊:
- 影响因子:3.1
- 作者:
Xiao Li;Pan Liu;Bo Ming;Kangdi Huang;Weifeng Xu;Yan Wen - 通讯作者:
Yan Wen
Journal of Emerging Trends in Computing and Information Sciences Associate Editors Effect of Unconstrained Walking Plane with Virtual Environment on Spatial Learning: an Exploratory Study 36-42 Knowledge Strategy for Financial Crime Prevention
计算与信息科学新兴趋势杂志 副主编 虚拟环境下无约束步行平面对空间学习的影响:探索性研究 36-42 金融犯罪预防的知识策略
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Abderrafiaa Koukam;Amanda Spink;Lee Bradford;Eden;J. Bernard;Jansen;T. Bernard;Han;Chia;Clement Leung;David Paper;Donald H Kraft;Hossam Elgindy;Imtiaz Australia;Ahmad;M Gordon Hunter;Y. Lafifi;Christos Grecos;Manish Gupta;Martin Purvis;Murali Raman;P. Nieuwenhuysen;P. Bingi;Ram B Misra;Rugayah Gy;Hashim Universiti;Teknologi Mara;Shah Alam;Selangor D. E. Malaysia;Sajid Hussain;Kumar Satish;Agarwal;B. Sattar;Sadkhan;S. Momani;Shakil Akhtar;Madhav Shamkant;Khairnar;Waleed H. Abdulla;Y Mustafa;Seog Yong;Kim;Yong Zhang;China Yu Zheng;Yucong Duan;Dorothea La;Chon;Abraham;Jyhjong Lin;Luis C Rabelo;Shenping Hu;China Dr;Shunfu Hu;S. Oprisan;Vishal Goyal;Weifeng Xu;Xiaochun Cheng;R. Agrifoglio;C. Metallo;G. Alkadi;T. Beaubouef;K. K. Patel;Sanjay Kumar Vij;Petter Gottschalk - 通讯作者:
Petter Gottschalk
Weifeng Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weifeng Xu', 18)}}的其他基金
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
- 批准号:
2333949 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
相似海外基金
SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
- 批准号:
2335807 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2335624 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Artificial Intelligence-Enhanced Cybersecurity: Workforce Needs and Barriers to Learning
协作研究:EAGER:SaTC-EDU:人工智能增强的网络安全:劳动力需求和学习障碍
- 批准号:
2113954 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: A Life-Cycle Approach for Artificial Intelligence-Based Cybersecurity Education
EAGER:SaTC-EDU:基于人工智能的网络安全教育的生命周期方法
- 批准号:
2114680 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
EAGER:SaTC-EDU:人工智能时代的网络安全教育:一种新颖的主动协作学习范式
- 批准号:
2114974 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Transformative Educational Approaches to Meld Artificial Intelligence and Cybersecurity Mindsets
EAGER:SaTC-EDU:融合人工智能和网络安全思维的变革性教育方法
- 批准号:
2115025 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
- 批准号:
2114936 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Teaching High School Students about Cybersecurity and Artificial Intelligence Ethics via Empathy-Driven Hands-On Projects
合作研究:EAGER:SaTC-EDU:通过同理心驱动的实践项目向高中生传授网络安全和人工智能伦理知识
- 批准号:
2114991 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
- 批准号:
2039287 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Artificial Intelligence-Enhanced Cybersecurity: Workforce Needs and Barriers to Learning
协作研究:EAGER:SaTC-EDU:人工智能增强的网络安全:劳动力需求和学习障碍
- 批准号:
2113955 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant