Wall Turbulence Control and Skin-Friction Drag Reduction with Novel Surface Microstructures

利用新型表面微观结构控制壁面湍流并减少表面摩擦阻力

基本信息

  • 批准号:
    2039433
  • 负责人:
  • 金额:
    $ 35.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Skin-friction drag is responsible for energy loss for ships, aircraft, and the trucking industry. This project explores innovative methods of reducing skin-friction drag using computations and experiments. One of the promising methods for reducing skin-friction drag is to dampen wall turbulence passively using surface microstructures. While a substantial amount of effort has been made to advance wall techniques, the process is not yet completely understood. The primary aim of this project is to provide a fundamental understanding of the underlying physics of these novel surface microstructures and show that they can provide systematic control of wall turbulence to minimize skin-friction drag. The project outcomes will be disseminated to broader communities through many educational and outreach activities, such as undergraduate research programs, scientific publications, conference presentations, and summer science camps to K-12 students and teachers.A micro airfoil structure, which is a newly proposed surface microstructure, is expected to achieve unique turbulence control capabilities due to its well-defined 3D geometry. The main objectives of the project are: (i) to demonstrate the turbulence control capability using the micro airfoil structure, (ii) to identify the connections between the control inputs created by the micro airfoil structure and the responses of skin-friction drag, (iii) to understand the fundamental mechanisms of the turbulence control and skin-friction drag reduction by the micro airfoil structure, and (iv) to recommend the optimum configurations of the single and arrays of micro airfoil structure for the maximum reduction of skin-friction drag. Direct numerical simulation and large eddy simulation will be used to compute fundamental flows, and particle image velocimetry will be used to measure velocities in the turbulent boundary layer. The fundamental knowledge obtained through this project will provide insight to answer the long-lasting questions about the dynamics of wall-bounded turbulent flows. The unique turbulence control techniques achieved by the micro airfoil structure will provide guidance to other research areas in aerospace, mechanical, chemical, and ocean engineering where turbulence control may lead to drag reduction. This project is jointly funded by Fluid Dynamics and the Established Program to Stimulate Competitive Research (EPSCoR) programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
皮肤摩擦阻力负责船舶,飞机和卡车行业的能源损失。该项目探讨了使用计算和实验减少皮肤摩擦阻力的创新方法。减少皮肤摩擦阻力的有前途的方法之一是使用表面微观结构对壁湍流抑制。尽管已经付出了巨大的努力来推进墙壁​​技术,但该过程尚未完全理解。该项目的主要目的是提供对这些新型表面微观结构的潜在物理学的基本理解,并表明它们可以对壁湍流进行系统的控制,以最大程度地减少皮肤摩擦的阻力。该项目的成果将通过许多教育和外展活动将其传播到更广泛的社区,例如本科研究计划,科学出版物,会议演讲以及K-12学生和老师的夏季科学训练营。由于其良好的构​​成良好的3D GEOMENTRY,预计新建议的表面微观结构是一种新建议的表面微观结构,该结构将获得独特的湍流控制能力。 The main objectives of the project are: (i) to demonstrate the turbulence control capability using the micro airfoil structure, (ii) to identify the connections between the control inputs created by the micro airfoil structure and the responses of skin-friction drag, (iii) to understand the fundamental mechanisms of the turbulence control and skin-friction drag reduction by the micro airfoil structure, and (iv) to recommend the optimum configurations of the single and微型机翼结构的阵列,以最大程度地减少皮肤摩擦阻力。直接的数值模拟和大型涡流模拟将用于计算基本流,并且将使用粒子图像速度测定法来测量湍流边界层中的速度。通过该项目获得的基本知识将提供洞察力,以回答有关壁挂式湍流动态的长期问题。微型机翼结构实现的独特湍流控制技术将为航空航天,机械,化学和海洋工程的其他研究领域提供指导,在该领域,湍流控制可能会导致减少阻力。该项目由流体动力和启发竞争研究计划(EPSCOR)计划共同资助。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估的评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taiho Yeom其他文献

High-frequency translational agitation with micro pin-fin surfaces for enhancing heat transfer of forced convection
  • DOI:
    10.1016/j.ijheatmasstransfer.2015.11.054
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Taiho Yeom;Terrence W. Simon;Mark North;Tianhong Cui
  • 通讯作者:
    Tianhong Cui
Numerical study on channel-flow convection heat transfer enhancement with piezoelectric fans under various operating conditions
  • DOI:
    10.1016/j.applthermaleng.2022.119674
  • 发表时间:
    2023-01-25
  • 期刊:
  • 影响因子:
  • 作者:
    Kiyun Kim;Taiho Yeom
  • 通讯作者:
    Taiho Yeom
Enhancing forced-convection heat transfer of a channel surface with synthetic jet impingements
  • DOI:
    10.1016/j.ijheatmasstransfer.2022.122770
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kiyun Kim;Pravesh Pokharel;Taiho Yeom
  • 通讯作者:
    Taiho Yeom

Taiho Yeom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

海底管道尾部分离板减阻、抑振、降湍流三重功效的最优控制机理研究
  • 批准号:
    52301341
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
激光转塔流动中跨声速激波与湍流涡系干扰机制及控制研究
  • 批准号:
    12302295
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向宽体客机机翼的仿鸟羽表面近壁流场建模方法及湍流控制机理研究
  • 批准号:
    12301672
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
高湍流环境下风力机翼型动态失速特性及控制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
展向振动控制下壁湍流拟序结构与内外区相互作用模型研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Prediction of molten wall turbulence and defects in the solidified wall by DNS and PFM and optimization of control methods
利用DNS和PFM预测熔壁湍流和凝固壁缺陷并优化控制方法
  • 批准号:
    23K03655
  • 财政年份:
    2023
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimising wall-turbulence spectra for noise control
优化壁湍流谱以控制噪声
  • 批准号:
    2482739
  • 财政年份:
    2020
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Studentship
Wall turbulence control: beyond the canonical smooth wall case
壁湍流控制:超越典型的光滑壁情况
  • 批准号:
    DP190102751
  • 财政年份:
    2019
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Discovery Projects
Control of near-wall turbulence via slip and transpiration
通过滑移和蒸腾控制近壁湍流
  • 批准号:
    1965893
  • 财政年份:
    2017
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Studentship
Relaminarization phenomena by traveling wave-like control in wall turbulence
壁湍流中行波类控制的再层化现象
  • 批准号:
    25889018
  • 财政年份:
    2013
  • 资助金额:
    $ 35.25万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了