D-ISN: TRACK 1: Supply Chain Analysis to Thwart Illegal Logging: Machine Learning-based Monitoring and Strategic Network Inspection

D-ISN:轨道 1:阻止非法采伐的供应链分析:基于机器学习的监控和战略网络检查

基本信息

  • 批准号:
    2039771
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This Disrupting Operations of Illicit Supply Networks (D-ISN) award will contribute to the Nation's security by investigating strategies for disrupting illicit supply networks, with specific focus on illegal logging. Illegal logging refers to breaking local or international laws at any point along the supply chain of timber, including illegal activities such as illegal harvesting or over-logging at export nodes, misreporting of raw or processed product volume at intermediate nodes, and misclassification of origin or species of timber at import nodes. Despite several existing laws to combat illegal logging, these activities continue to thrive at both local and global scale. Illegal logging has been implicated as a leading cause of the destruction of major forest ecosystems that play a significant role in carbon sequestration and in supporting biodiversity. The effectiveness of laws and mechanisms for combating illegal logging is limited by poor understanding of where, how much, and what type of timber is harvested and where it goes in the global trade of wood products. To address this systemic challenge, the project will develop quantitative models and methods to monitor the rates of harvest and conduct strategic inspection to detect illegally harvested or traded timber in the global supply chain. The project will demonstrate how current monitoring and inspection technology can be leveraged to: (1) quantify the flow of illegal timber in the global supply chain; and (2) improve the compliance with and enforcement of laws for legal trade of timber. The project will train graduate students to work at the interface of operations research and environment sustainability and will develop methods that can contribute to further advance the sustainable development policies in the United States. The project develops spatiotemporal network models and analysis tools to identify and thwart the flow of illegal timber throughout the global supply chain. The project will investigate: (i) estimation of illegal timber harvest rates in both protected and concession forest regions based on remote sensing data, botanical characteristics, and ecology of timber species; (ii) supply chain network analysis to evaluate the movement of illegal timber and estimate illegal trade volume; (iii) strategic network inspection to improve the detection of fraud and increase the forensic capacity for wood identification at critical network locations. The project will build on advances in machine learning, remote sensing, network optimization, and game theory. The datasets and models from this project will be useful to multiple communities: agencies responsible for tracking movement of illegal timber, researchers seeking to advance scientific methods for analysis and certification of natural resources supply chains, and ecologists interested in using machine learning to assess the impact of human-induced changes on forest dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项破坏非法供应网络行动(D-ISN)奖将通过调查破坏非法供应网络的战略,特别是非法伐木,为国家安全做出贡献。非法采伐是指在木材供应链沿着的任何一点违反当地或国际法律,包括非法活动,如在出口节点非法采伐或过度采伐,在中间节点误报原材料或加工产品数量,以及在进口节点错误分类木材的原产地或品种。尽管有几项打击非法采伐的现行法律,但这些活动在地方和全球范围内继续蓬勃发展。非法采伐被认为是破坏在碳固存和支持生物多样性方面发挥重要作用的主要森林生态系统的主要原因。打击非法采伐的法律和机制的效力受到限制,因为人们对采伐的地点、数量和类型以及木材在全球木材产品贸易中的去向缺乏了解。为了应对这一系统性挑战,该项目将开发量化模型和方法,以监测采伐率,并进行战略检查,以发现全球供应链中非法采伐或交易的木材。该项目将展示如何利用现有的监测和检查技术:(1)量化全球供应链中非法木材的流动情况;(2)改善木材法律的贸易法律的遵守和执行情况。该项目将培训研究生从事业务研究和环境可持续性的工作,并将制定有助于进一步推动美国可持续发展政策的方法。该项目开发时空网络模型和分析工具,以查明和阻止非法木材在整个全球供应链中的流动。该项目将调查:(i)根据遥感数据、植物学特征和木材物种生态学,估计受保护林区和特许林区的非法木材采伐率;(ii)进行供应链网络分析,以评估非法木材的流动情况,并估计非法贸易量;(iii)进行战略网络检查,以改进对欺诈行为的侦查,并提高关键网络地点木材鉴定的法医能力。该项目将建立在机器学习、遥感、网络优化和博弈论的基础上。该项目的数据集和模型将对多个社区有用:负责追踪非法木材流动的机构,寻求推进自然资源供应链分析和认证科学方法的研究人员,以及对使用机器学习来评估人类影响感兴趣的生态学家,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查进行评估来支持的搜索.

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A unified explanation for the morphology of raised peatlands
  • DOI:
    10.1038/s41586-023-06807-w
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    A. Cobb;R. Dommain;Kimberly Yeap;Hannan Cao;N. Dadap;Bodo Bookhagen;Paul H Glaser;Charles F Harvey
  • 通讯作者:
    A. Cobb;R. Dommain;Kimberly Yeap;Hannan Cao;N. Dadap;Bodo Bookhagen;Paul H Glaser;Charles F Harvey
Strategic Monitoring of Networked Systems with Heterogeneous Security Levels
  • DOI:
    10.1109/tcns.2023.3333392
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Jezdimir Milošević;Mathieu Dahan;Saurabh Amin;H. Sandberg
  • 通讯作者:
    Jezdimir Milošević;Mathieu Dahan;Saurabh Amin;H. Sandberg
Simultaneous Retrieval of Surface Roughness Parameters for Bare Soils From Combined Active–Passive Microwave SMAP Observations
  • DOI:
    10.1109/tgrs.2020.3035204
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Anke Fluhrer;T. Jagdhuber;R. Akbar;P. O’neill;D. Entekhabi
  • 通讯作者:
    Anke Fluhrer;T. Jagdhuber;R. Akbar;P. O’neill;D. Entekhabi
Improved terrain estimation from spaceborne lidar in tropical peatlands using spatial filtering
  • DOI:
    10.1016/j.srs.2022.100074
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Cobb;R. Dommain;R. Sukri;F. Metali;B. Bookhagen;C. Harvey;Hao Tang
  • 通讯作者:
    A. Cobb;R. Dommain;R. Sukri;F. Metali;B. Bookhagen;C. Harvey;Hao Tang
Relationship Between Active and Passive Microwave Signals Over Vegetated Surfaces
  • DOI:
    10.1109/tgrs.2021.3053586
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    M. Link;T. Jagdhuber;P. Ferrazzoli;L. Guerriero;D. Entekhabi
  • 通讯作者:
    M. Link;T. Jagdhuber;P. Ferrazzoli;L. Guerriero;D. Entekhabi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saurabh Amin其他文献

Stackelberg Routing on Parallel Transportation Networks
并行运输网络上的 Stackelberg 路由
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walid Krichene;J. Reilly;Saurabh Amin;A. Bayen
  • 通讯作者:
    A. Bayen
A Network Monitoring Game with Heterogeneous Component Criticality Levels
具有异构组件关键级别的网络监控游戏
Optimal Information Provision for Strategic Hybrid Workers
为战略混合工人提供最佳信息
Convergence and Stability of Coupled Belief-Strategy Learning Dynamics in Continuous Games
连续博弈中信念-策略耦合学习动态的收敛性和稳定性
On the Characterization and Computation of Nash Equilibria in Horizontal Queueing Networks
水平排队网络纳什均衡的表征与计算
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walid Krichene;J. Reilly;Saurabh Amin;A. Bayen
  • 通讯作者:
    A. Bayen

Saurabh Amin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saurabh Amin', 18)}}的其他基金

CAREER: Resilient Design of Networked Infrastructure Systems: Models, Validation, and Synthesis
职业:网络基础设施系统的弹性设计:模型、验证和综合
  • 批准号:
    1453126
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
CPS: Frontiers: Collaborative Research: Foundations of Resilient CybEr-Physical Systems (FORCES)
CPS:前沿:协作研究:弹性网络物理系统 (FORCES) 的基础
  • 批准号:
    1239054
  • 财政年份:
    2013
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似海外基金

Global Centers Track 2: SuReMin: Sustainable, resilient, responsible global minerals supply chain
全球中心轨道 2:SuReMin:可持续、有弹性、负责任的全球矿产供应链
  • 批准号:
    2330041
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track J: Rapid detection technologies and decision-support systems to mitigate food supply chain threats
NSF 融合加速器轨道 J:缓解食品供应链威胁的快速检测技术和决策支持系统
  • 批准号:
    2236622
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track J: Data-driven Agriculture to Bridge Small Farms to Regional Food Supply Chains (L02619644)
NSF 融合加速器轨道 J:数据驱动农业将小型农场与区域食品供应链联系起来 (L02619644)
  • 批准号:
    2236302
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
RII Track-2 FEC: Natural Resource Supply Chain Optimization using Aerial Imagery Interpreted with Machine Learning Methods
RII Track-2 FEC:使用机器学习方法解释的航空图像优化自然资源供应链
  • 批准号:
    2119689
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Cooperative Agreement
D-ISN: TRACK 1: Understanding and Disrupting Key Convergence Nodes of the Illicit Gold and Mercury Supply Chains in Latin America and Africa
D-ISN:轨道 1:了解和破坏拉丁美洲和非洲非法黄金和汞供应链的关键聚合节点
  • 批准号:
    2039980
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
UK Fashion & Textiles: Data-driven platform, enabling manufacturing supply chain real-time decision-making, effective track & trace & sustainability
英国时尚
  • 批准号:
    92979
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Collaborative R&D
D-ISN: TRACK 2: Building a Multifaceted Research Team to Examine the Use of Information Technology in the Creation and Disruption of Domestic Sex Trafficking Supply Networks
D-ISN:轨道 2:建立多方面的研究团队,研究信息技术在创建和破坏家庭性贩运供应网络中的使用情况
  • 批准号:
    2039678
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: Equitable Food-Security: Disaster-resilient supply chains for pandemics and extreme weather events
SCC-CIVIC-PG 轨道 B:公平粮食安全:应对流行病和极端天气事件的抗灾供应链
  • 批准号:
    2043988
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
D-ISN: TRACK 1: Collaborative Research: An Interdisciplinary Approach to Understanding, Modeling, and Disrupting Drug and Counterfeit Illicit Supply Chains
D-ISN:轨道 1:协作研究:理解、建模和破坏药品和假冒非法供应链的跨学科方法
  • 批准号:
    2039693
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
D-ISN: TRACK 1: Collaborative Research: Discovery, Analysis, and Disruption of Illicit Narcotic Supply Networks
D-ISN:轨道 1:协作研究:非法麻醉品供应网络的发现、分析和破坏
  • 批准号:
    2039862
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了