EAGER: Efficient Privacy-aware Document Search in the Cloud
EAGER:云端高效的隐私意识文档搜索
基本信息
- 批准号:2040146
- 负责人:
- 金额:$ 21.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As sensitive information is increasingly stored in the cloud, privacy protection is a critical factor for users to adopt cloud-based information services such as document search. A cloud server can observe the client-initiated query processing flow, extract statistical patterns, and reason about client's data. As a result, the risk of leakage-abuse attacks exists when searching in the cloud. The main challenge to perform privacy-preserving search is that index visitation can reveal sensitive data patterns, and computation involved in advanced ranking can further expose private feature information. On the other hand, hiding index and feature information through full encryption prevents the server from performing effective scoring and result comparison. This project explores the challenging open problems in algorithmic indexing and ranking solutions for privacy-aware cloud data search. The approach emphasizes an evaluation-driven design where search performance is assessed in multiple aspects of relevance, efficiency, and privacy for practical system deployment. The project integrates the proposed research with an educational plan including undergraduate and graduate students' involvement in the research project, instructional material development, and outreach activities.The exploratory research addresses two fundamental research challenges: (1) privacy-aware indexing and runtime support in matching documents for a given query with an emphasis to curtail statistical text information leakage while providing efficient and private access of ranking features; (2) privacy-aware end-to-end top-K ranking with a multi-stage scheme which seeks a combination of linear and nonlinear methods such as neural nets and learning ensembles. The design goal is to minimize the leakage of document features and characteristics while still accomplishing a reasonable response time and competitive relevance. The evaluation process will use public datasets to assess the effectiveness of the developed techniques for practical system deployment. This research effort will open the door for bridging the gap between privacy and advanced information retrieval in searching large encrypted datasets. The developed research results will be made public for research and industry communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着敏感信息越来越多地存储在云中,隐私保护是用户采用文档搜索等基于云的信息服务的关键因素。云服务器可以观察客户端发起的查询处理流程,提取统计模式,并对客户端数据进行推理。因此,在云中搜索时存在泄漏滥用攻击的风险。执行隐私保护搜索的主要挑战是索引访问会揭示敏感数据模式,而高级排名所涉及的计算可能会进一步暴露隐私特征信息。另一方面,通过完全加密隐藏索引和特征信息会阻止服务器执行有效的评分和结果比较。该项目探索了隐私感知的云数据搜索的算法索引和排名解决方案中具有挑战性的公开问题。该方法强调评估驱动的设计,从相关性、效率和隐私等多个方面对搜索性能进行评估,以实现实际的系统部署。该项目将拟议的研究与教育计划相结合,包括本科生和研究生参与研究项目、教材开发和推广活动。探索性研究解决了两个基本研究挑战:(1)针对给定查询的文档匹配中的隐私意识索引和运行时支持,重点是减少统计文本信息的泄漏,同时提供对排名特征的高效和私人访问;(2)隐私感知的端到端Top-K排名和多阶段方案,该方案寻求线性和非线性方法的组合,如神经网络和学习集成。设计目标是在保持合理的响应时间和竞争相关性的同时,最大限度地减少文档特征和特征的泄漏。评价过程将使用公共数据集来评估所开发的技术在实际系统部署方面的有效性。这项研究工作将为在搜索大型加密数据集方面弥合隐私和高级信息检索之间的差距打开大门。开发的研究成果将向研究和行业团体公开。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Index Obfuscation for Oblivious Document Retrieval in a Trusted Execution Environment
- DOI:10.1145/3340531.3412035
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Jinjin Shao;Shiyu Ji;A. O. Glova;Yifan Qiao;Tao Yang;T. Sherwood
- 通讯作者:Jinjin Shao;Shiyu Ji;A. O. Glova;Yifan Qiao;Tao Yang;T. Sherwood
Compact Token Representations with Contextual Quantization for Efficient Document Re-ranking
具有上下文量化的紧凑令牌表示,可实现高效的文档重新排序
- DOI:10.18653/v1/2022.acl-long.51
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Yingrui;Qiao, Yifan;Yang, Tao
- 通讯作者:Yang, Tao
Lightweight Composite Re-Ranking for Efficient Keyword Search with BERT
- DOI:10.1145/3488560.3498495
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Yingrui Yang;Yifan Qiao;Jinjin Shao;Xifeng Yan;Tao Yang
- 通讯作者:Yingrui Yang;Yifan Qiao;Jinjin Shao;Xifeng Yan;Tao Yang
Window Navigation with Adaptive Probing for Executing BlockMax WAND
用于执行 BlockMax WAND 的带有自适应探测的窗口导航
- DOI:10.1145/3404835.3463109
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shao, J.;Qiao, Y.;Ji, S.;Yang, T.
- 通讯作者:Yang, T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Yang其他文献
High Resolution Spectroscopic Measurement of 130Te2: Reference Lines near 444.4 nm for eEDM Experiment using PbF molecules
130Te2 的高分辨率光谱测量:使用 PbF 分子进行 eEDM 实验的 444.4 nm 附近的参考线
- DOI:
10.1016/j.saa.2021.120754 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Qinning Lin;Renjun Pang;Zesen Wang;Shunyong Hou;Hailing Wang;Jianping Yin;Tao Yang - 通讯作者:
Tao Yang
A novel negative selection algorithm based on subspace clustering
一种基于子空间聚类的负选择算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Liu ZhengJun;Wen Chen;Tao Li;Tao Yang - 通讯作者:
Tao Yang
An Improved Preparation of 4-Chloro-1H-indazole
4-氯-1H-吲唑制备方法的改进
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ge Meng;Tao Yang;Yang Liu - 通讯作者:
Yang Liu
Optimal short-term outcomes in balloon pulmonary angioplasty: the minimum frequency of three sessions annually
球囊肺血管成形术的最佳短期结果:每年至少进行 3 次治疗的频率
- DOI:
10.1177/17534666241232521 - 发表时间:
2024 - 期刊:
- 影响因子:4.3
- 作者:
Xin Li;Tao Yang;Yi Zhang;Qing Zhao;Q. Zeng;Qi Jin;Anqi Duan;Zhi;Meixi Hu;Sicheng Zhang;Luyang Gao;Changming Xiong;Q. Luo;Zhihui Zhao;Zhihong Liu - 通讯作者:
Zhihong Liu
Distributed least squares solver for network linear equations
网络线性方程的分布式最小二乘求解器
- DOI:
10.1016/j.automatica.2019.108798 - 发表时间:
2018-09 - 期刊:
- 影响因子:6.4
- 作者:
Tao Yang;Jemin George;Jiahu Qin;Xinlei Yi;Junfeng Wu - 通讯作者:
Junfeng Wu
Tao Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Yang', 18)}}的其他基金
III: Small: Efficiency Optimization for Neural Document Ranking with Compact Representations
III:小:具有紧凑表示的神经文档排序的效率优化
- 批准号:
2225942 - 财政年份:2022
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
III: Small: Low-Cost Deduplication and Search for Versioned Datasets
III:小型:低成本重复数据删除和版本化数据集搜索
- 批准号:
1528041 - 财政年份:2015
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
III: Small: Parallel Similarity Comparison and Duplicate Detection with Incremental Computing
III:小:增量计算的并行相似性比较和重复检测
- 批准号:
1118106 - 财政年份:2011
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
SOFTWARE:"Cluster-based Runtime Support for Data-Intensive Online Applications"
软件:“数据密集型在线应用程序基于集群的运行时支持”
- 批准号:
0234346 - 财政年份:2003
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
ITR: Optimizing Execution of Parallel Programs on a Cluster of Shared Memory Machines
ITR:优化共享内存机器集群上并行程序的执行
- 批准号:
0082666 - 财政年份:2000
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
CAREER: Scheduling and Run-time Support for Parallel Irregular Computations
职业:并行不规则计算的调度和运行时支持
- 批准号:
9702640 - 财政年份:1997
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Parameterized Task Graph Scheduling
美法合作研究:参数化任务图调度
- 批准号:
9513361 - 财政年份:1996
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
Research Initiation Award: Scheduling Task and Loop Parallelism on Message-Passing Architectures
研究启动奖:消息传递架构上的调度任务和循环并行性
- 批准号:
9409695 - 财政年份:1994
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317192 - 财政年份:2023
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
CRII: SaTC: Toward Secure, Privacy-Preserving, and Efficient Crowdsourcing Systems
CRII:SaTC:迈向安全、隐私保护和高效的众包系统
- 批准号:
2246143 - 财政年份:2023
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
- 批准号:
22KF0098 - 财政年份:2023
- 资助金额:
$ 21.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
- 批准号:
23KJ0649 - 财政年份:2023
- 资助金额:
$ 21.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243053 - 财政年份:2023
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317193 - 财政年份:2023
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243052 - 财政年份:2023
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
Privacy-Preserving and Action-Event Sequence Data Mining and Advanced Data Structures for Efficient Heuristic Search
隐私保护和动作事件序列数据挖掘以及用于高效启发式搜索的高级数据结构
- 批准号:
RGPIN-2019-07301 - 财政年份:2022
- 资助金额:
$ 21.75万 - 项目类别:
Discovery Grants Program - Individual