NSF Convergence Accelerator Track D: Deep Monitoring of the Biome Will Converge Life Sciences, Policy, and Engineering

NSF 融合加速器轨道 D:生物群落的深度监测将融合生命科学、政策和工程

基本信息

  • 批准号:
    2040688
  • 负责人:
  • 金额:
    $ 92.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. Today there is a huge gap between the global need to manage our ecosystems, protect our societies, and discover new therapeutics – and the global capacity to deliver the data and models needed to solve the most pressing challenges of our time. This project is intended to bridge that gap by connecting researchers, policy makers, and industries to the scalable biome monitoring networks of the future – by developing the unified biome datasets, cross-cutting models, and policy paradigms that will empower these disciplines to accelerate, innovate, and converge. If successful, this would lead to a fundamental paradigm shift in how disciplines study and manage the planet. It will contribute to the advent of a new generation of scientists developing predictive AI models of the biome, and to developing science-based methods and tools for shaping policies and delivering policy-aware tools to solve societal-scale challenges. We expect that deep monitoring of biome and the new science and technology ecosystem emerging from it will have wide impact on human health, agriculture, national security, and ecology. The technical goals of this project have been carefully instantiated so that progress towards convergence makes a lasting impact on a range of scientific problems. First, the life sciences, engineering, and policy domains continually face the challenge of managing and unifying disparate biome and ecological datasets. These issues are addressed head on by bringing together uniquely deep and state-of-the-art biome and ecological data sets, identifying the hard unification problems, and providing a reference solution to unification. Second, there is a focus is on new unified agent-based models for predicting mosquito populations, as mosquito-borne diseases already account for over 600 million cases of human disease per year, with a disproportionately large impact on disadvantaged communities in sub-Saharan-Africa. By accelerating the development of new predictive mosquito models – especially by generalizing them to additional species – this project will provide long lasting contributions to human health and pandemic preparedness. Third, as deep biome data exponentially scales, the life sciences will become overwhelmed with genomic information. Convergence must lead to new methods to efficiently harness these data and autonomously derive insights.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感、以团队为基础的多学科努力,以应对国家重要性的挑战,并将在不久的将来产生对社会有价值的成果。今天,管理我们的生态系统、保护我们的社会和发现新疗法的全球需求与提供解决我们时代最紧迫挑战所需的数据和模型的全球能力之间存在着巨大的差距。该项目旨在通过将研究人员、政策制定者和行业与未来可扩展的生物群监测网络连接起来,通过开发统一的生物群数据集、交叉模型和政策范例来弥合这一差距,从而使这些学科能够加速、创新和融合。如果成功,这将导致学科研究和管理地球的方式发生根本性的转变。它将有助于新一代科学家的出现,开发生物群的预测性人工智能模型,并开发基于科学的方法和工具,以制定政策并提供政策感知工具,以解决社会规模的挑战。我们预计,对生物群的深度监测以及由此产生的新的科技生态系统将对人类健康、农业、国家安全和生态产生广泛影响。该项目的技术目标经过了仔细的实例化,以使趋同方面的进展对一系列科学问题产生持久的影响。首先,生命科学、工程和政策领域持续面临着管理和统一不同的生物群和生态数据集的挑战。这些问题是通过汇集独特的深度和最先进的生物群和生态数据集,确定难以统一的问题,并提供统一的参考解决方案来正面解决的。第二,重点是用于预测蚊子数量的新的统一代理模型,因为蚊媒疾病每年已占人类疾病病例的6亿多例,对撒哈拉以南非洲的弱势社区产生了不成比例的巨大影响。通过加快开发新的预测蚊子模型--特别是将其推广到更多物种--该项目将为人类健康和预防大流行作出长期贡献。第三,随着深层生物组数据呈指数级增长,生命科学将被基因组信息淹没。融合必须导致新的方法来有效地利用这些数据并自主地得出见解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janos Sztipanovits其他文献

Anvil: An integration of artificial intelligence, sampling techniques, and a combined CAD-CFD tool
Anvil:人工智能、采样技术和 CAD-CFD 组合工具的集成
Editorial to the theme section on model-based design of cyber-physical systems
  • DOI:
    10.1007/s10270-018-0670-9
  • 发表时间:
    2018-03-12
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Manfred Broy;Heinrich Daembkes;Janos Sztipanovits
  • 通讯作者:
    Janos Sztipanovits
Hybrid Modeling and Verification of Embedded Control Systems
  • DOI:
    10.1016/s1474-6670(17)43608-1
  • 发表时间:
    1997-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pieter J Mosterman;Gautam Biswas;Janos Sztipanovits
  • 通讯作者:
    Janos Sztipanovits

Janos Sztipanovits的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janos Sztipanovits', 18)}}的其他基金

D: Computing the Biome
D:计算生物群落
  • 批准号:
    2134862
  • 财政年份:
    2021
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Cooperative Agreement
2018 CPS PI Meeting
2018年CPS PI会议
  • 批准号:
    1840713
  • 财政年份:
    2018
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
2017 CPS PI Meeting
2017年CPS PI会议
  • 批准号:
    1743523
  • 财政年份:
    2017
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
PIRE: Science of Design for Societal-Scale Cyber-Physical Systems
PIRE:社会规模网络物理系统的设计科学
  • 批准号:
    1743772
  • 财政年份:
    2017
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
2016 NSF-Germany IoT Workshop
2016 NSF-德国物联网研讨会
  • 批准号:
    1622473
  • 财政年份:
    2016
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
2016 CPS PI Meeting
2016年CPS PI会议
  • 批准号:
    1641269
  • 财政年份:
    2016
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
2015 CPS PI Meeting
2015年CPS PI会议
  • 批准号:
    1545573
  • 财政年份:
    2015
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
Cyber-Physical Systems Virtual Organization: Active Resources
信息物理系统虚拟组织:活跃资源
  • 批准号:
    1521617
  • 财政年份:
    2015
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Continuing Grant
2014 NSF CPS PI Meeting
2014 NSF CPS PI 会议
  • 批准号:
    1446160
  • 财政年份:
    2014
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
2013 CPS PI Meeting and CY 2013-CY 2014 Workshops on CPS Energy, CPS Transportation, CPS Agriculture, and CPS Medical Devices
2013年CPS PI会议和CY 2013-CY 2014 CPS能源、CPS交通、CPS农业和CPS医疗器械研讨会
  • 批准号:
    1361258
  • 财政年份:
    2013
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
  • 批准号:
    2344174
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 92.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了