EAGER: Collaborative Research: Understanding Human Behaviors and Mental Health using Federated Machine Learning on Smart Phones
EAGER:协作研究:使用智能手机上的联合机器学习了解人类行为和心理健康
基本信息
- 批准号:2041065
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding human behaviors and mental health are becoming increasingly important for modern society. The ongoing outbreak of coronavirus (COVID-19) not only further highlights its importance but also calls for immediate action. This project will develop a federated machine-learning (FL) framework and application on mobile device for understanding human behaviors and mental health. The planned research will synergize interdisciplinary research and particularly push the envelopes of federated learning and public health. This project will not only provide an important and timely real-world application, health-behavior monitoring and prediction, for the federated learning community, but also will advance our understanding of physical and mental health through mobile devices, and the impacts of COVID-19 to human society in a unique and detailed angle. This project will integrate the interdisciplinary research results into courses, and train students from underrepresented groups. Technically, the project has two main components: 1) Data collection and statistical analysis, and 2) Building federated learning framework and application. In the first component, the project will collect smartphone-based sensor data from student sub-population in both urban and suburban areas along with other health related surveys and data. The project will specifically analyze and determine what data collected from the mobile phone can be the indictors and causal factors of behavior and mental health. In the second component, the project will develop deep learning models to predict human behaviors, physical and mental health conditions/trends over time, under rigorous privacy protection. Specifically, the prediction models will be developed in federated learning settings to train the model locally on the device with differential privacy guarantees, without collecting sensor data to the cloud. Finally, the project will develop a federated learning based behavior monitoring and prediction application on mobile phones and will evaluate the prototype system on the cohort of studies from first component.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解人类行为和心理健康对现代社会越来越重要。新型冠状病毒(COVID-19)的持续爆发不仅进一步凸显了其重要性,也要求立即采取行动。本计画将在移动终端上开发一个联邦机器学习框架与应用,以了解人类行为与心理健康。计划中的研究将协同跨学科研究,特别是推动联邦学习和公共卫生的信封。该项目不仅将为联邦学习社区提供一个重要而及时的现实世界应用,即健康行为监测和预测,还将以独特而详细的角度促进我们对移动的设备的身心健康以及COVID-19对人类社会的影响的理解。 该项目将把跨学科的研究成果融入课程,并培养来自代表性不足群体的学生。从技术上讲,该项目有两个主要组成部分:1)数据收集和统计分析,2)构建联邦学习框架和应用。在第一部分中,该项目将收集基于智能手机的传感器数据,这些数据来自沿着城市和郊区的学生群体,以及其他与健康相关的调查和数据。 该项目将具体分析和确定从移动的手机收集的哪些数据可以作为行为和心理健康的指标和因果因素。在第二部分中,该项目将开发深度学习模型,以预测人类行为,随着时间的推移,在严格的隐私保护下的身心健康状况/趋势。具体而言,预测模型将在联合学习设置中开发,以在具有不同隐私保证的设备上本地训练模型,而无需将传感器数据收集到云端。 最后,该项目将在移动的手机上开发一个基于联邦学习的行为监测和预测应用程序,并将在第一个组件的研究队列上评估原型系统。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FLSys: Toward an Open Ecosystem for Federated Learning Mobile Apps
- DOI:10.1109/tmc.2022.3223578
- 发表时间:2021-11
- 期刊:
- 影响因子:7.9
- 作者:Han Hu;Xiaopeng Jiang;Vijaya Datta Mayyuri;An M. Chen;D. Shila;Adriaan Larmuseau;Ruoming Jin;C. Borcea;Nhathai Phan
- 通讯作者:Han Hu;Xiaopeng Jiang;Vijaya Datta Mayyuri;An M. Chen;D. Shila;Adriaan Larmuseau;Ruoming Jin;C. Borcea;Nhathai Phan
Lifelong DP: Consistently Bounded Differential Privacy in Lifelong Machine Learning
终身 DP:终身机器学习中始终有界的差分隐私
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lai, Phung;Hu, Han;Phan, NhatHai;Jin, Ruoming;Thai, My T.;Chen, An
- 通讯作者:Chen, An
Zone-based Federated Learning for Mobile Sensing Data
- DOI:10.1109/percom56429.2023.10099308
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Xiaopeng Jiang;Thinh On;Nhathai Phan;Hessamaldin Mohammadi;Vijaya Datta Mayyuri;An M. Chen;Ruoming Jin;C. Borcea
- 通讯作者:Xiaopeng Jiang;Thinh On;Nhathai Phan;Hessamaldin Mohammadi;Vijaya Datta Mayyuri;An M. Chen;Ruoming Jin;C. Borcea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruoming Jin其他文献
MMIS-07, 08: Mining Multiple Information Sources Workshop Report
MMIS-07, 08:挖掘多信息源研讨会报告
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
朱兴全;Gagan Agrawal;Yuri Breitbart;Ruoming Jin - 通讯作者:
Ruoming Jin
Middleware for data mining applications on clusters and grids
- DOI:
10.1016/j.jpdc.2007.06.007 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:
- 作者:
Leonid Glimcher;Ruoming Jin;Gagan Agrawal - 通讯作者:
Gagan Agrawal
Privacy-aware smart city: A case study in collaborative filtering recommender systems
- DOI:
https://doi.org/10.1016/j.jpdc.2017.12.015 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Feng Zhang;Victor E. Lee;Ruoming Jin;Saurabh Garg;Kim-Kwang Raymond Choo;Michele Maasberg;Lijun Dong;Chi Cheng - 通讯作者:
Chi Cheng
Teenager Substance Use on Reddit: Mixed Methods Computational Analysis of Frames and Emotions
青少年在 Reddit 上的物质使用:框架和情绪的混合方法计算分析
- DOI:
10.2196/59338 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.000
- 作者:
Xinyu Zhang;Jianfeng Zhu;Deric R Kenne;Ruoming Jin - 通讯作者:
Ruoming Jin
Ruoming Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruoming Jin', 18)}}的其他基金
EAGER: Collaborative Research: On the Theoretical Foundation of Recommendation System Evaluation
EAGER:协作研究:推荐系统评价的理论基础
- 批准号:
2142675 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
SBIR Phase I: GraphSQL: Powering Relational DBMS with Fast and Easy-to-Use Graph Analytics
SBIR 第一阶段:GraphSQL:通过快速且易于使用的图形分析为关系型 DBMS 提供支持
- 批准号:
1248736 - 财政年份:2013
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CAREER: Novel Data Mining Technologies for Complex Network Analysis
职业:用于复杂网络分析的新型数据挖掘技术
- 批准号:
0953950 - 财政年份:2010
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant