EAGER: Exploring Artificial Intelligence Techniques for Energy-Efficient Arrhythmia Detection and Identification in Connected Implantable Cardiac Devices

EAGER:探索人工智能技术,在互联的植入式心脏设备中进行节能心律失常检测和识别

基本信息

  • 批准号:
    2041327
  • 负责人:
  • 金额:
    $ 28.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Cardiovascular disease is one of the major causes of all human deaths. Irregular heart rhythms or arrhythmias are one of the most common causes for cardiovascular death. Arrhythmia-related cardiac morbidity and mortality can be reduced by the implantation of permanent cardiac devices that are designed to monitor the heart rhythm for serious abnormalities and to deliver immediate therapy when necessary. In the United States, nearly 225,000 pacemakers or other cardiac rhythm management devices (CRMD) are implanted annually. Device manufacturers have recently started incorporating advanced features to make the cardiac devices smarter and more connected. In the treatment of arrhythmia, the identification of the specific nature of arrhythmia is critical. At present the implantable cardiac devices have the capability only to detect the presence of an arrhythmia not to identify which kind of arrhythmia. Because of this shortcoming in current implantable devices, it is possible that they may administer the wrong corrective measure for the type of arrhythmia. This lack of specific treatment can have devastating consequences. Thus, energy efficient arrhythmia detection and identification is critical to next generation implantable cardiac devices. The results of this research work will have the potential to significantly impact the way patients suffering from arrhythmia are diagnosed and treated. CRMDs are severely energy constrained devices. Any new added features will drain more charge from the battery and will reduce the battery life of the implanted cardiac devices. In this research, the team will explore energy-efficient novel artificial intelligence (AI) techniques for real-time detection and identification of arrhythmia in connected smart implantable cardiac devices. Further, the feasibility of ultra-low power hardware implementation of the developed algorithms will be explored. The main novelty of this research lies in using statistical models and algorithms and in using energy efficient deep neural networks (DNNs) for arrhythmia detection and identification. The developed AI algorithm hardware can be optimized for energy efficiency by reduction of computation size and by reduction of number of computations. The research results are expected to enable the cardiac device manufacturers to develop the next generation of implantable cardiac devices capable of identifying arrythmias.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
心血管疾病是所有人类死亡的主要原因之一。心律不齐是心血管死亡的最常见原因之一。通过植入永久性心脏装置,可降低心律失常相关的心脏病发病率和死亡率,永久性心脏装置旨在监测心律是否出现严重异常,并在必要时提供即时治疗。在美国,每年植入近225,000个起搏器或其他心律管理设备(CRMD)。设备制造商最近开始整合先进的功能,使心脏设备更智能,连接更紧密。在心律失常的治疗中,对心律失常的特异性性质的识别至关重要。目前,植入式心脏设备仅具有检测心律失常的存在的能力,而不能识别哪种心律失常。由于当前植入式器械的这一缺点,它们可能会对心律失常类型实施错误的纠正措施。缺乏具体的治疗可能会产生破坏性的后果。因此,能量高效的心律失常检测和识别对于下一代植入式心脏设备至关重要。这项研究工作的结果将有可能显著影响心律失常患者的诊断和治疗方式。CRMD是能量严重受限的器械。任何新增加的功能都将消耗更多的电池电量,并将缩短植入心脏器械的电池寿命。在这项研究中,该团队将探索节能的新型人工智能(AI)技术,用于实时检测和识别连接的智能植入式心脏设备中的心律失常。此外,超低功耗硬件实现的算法的可行性进行了探讨。这项研究的主要新奇在于使用统计模型和算法,以及使用节能深度神经网络(DNN)进行心律失常检测和识别。开发的AI算法硬件可以通过减少计算大小和减少计算次数来优化能源效率。该研究成果有望使心脏设备制造商能够开发出能够识别心律失常的下一代植入式心脏设备。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AlphaMatch: Improving Consistency for Semi-supervised Learning with Alpha-divergence
A Meta-Transfer Learning Approach to ECG Arrhythmia Detection
Firefly Neural Architecture Descent: a General Approach for Growing Neural Networks
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lemeng Wu;Bo Liu-;P. Stone;Qiang Liu
  • 通讯作者:
    Lemeng Wu;Bo Liu-;P. Stone;Qiang Liu
Quickest Joint Detection and Classification of Faults in Statistically Periodic Processes
统计周期过程中故障的最快联合检测和分类
  • DOI:
    10.1109/icassp39728.2021.9414101
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Banerjee, Taposh;Padhy, Smruti;Taha, Ahmad;John, Eugene
  • 通讯作者:
    John, Eugene
Stein Self-Repulsive Dynamics: Benefits From Past Samples
斯坦因自排斥动力学:过去样本的好处
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eugene John其他文献

Cache leakage power analysis in embedded applications
嵌入式应用中的缓存泄漏功耗分析
A superscalar simulation employing poisson distributed stalls
  • DOI:
    10.1016/j.compeleceng.2007.03.003
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher B. Smith;David R. Mandel;Eugene John
  • 通讯作者:
    Eugene John

Eugene John的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eugene John', 18)}}的其他基金

REU Site: ESCAPE: Experimental Study on Computer Architecture and Performance Evaluation
REU 网站:ESCAPE:计算机体系结构和性能评估的实验研究
  • 批准号:
    1063106
  • 财政年份:
    2011
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Low Power CMOS Circuits and Systems for Next Generation Wireless Information Technology
合作研究:下一代无线信息技术的低功耗 CMOS 电路和系统
  • 批准号:
    0219338
  • 财政年份:
    2002
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Design Optimization and Simulation of OEIC Photoreceivers
OEIC 光接收器的设计优化与仿真
  • 批准号:
    9813713
  • 财政年份:
    1998
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Optoelectronics and Fiber Optics Laboratory
光电子与光纤实验室
  • 批准号:
    9750738
  • 财政年份:
    1997
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Low Power Microelectronics
低功耗微电子
  • 批准号:
    9714993
  • 财政年份:
    1997
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Exploring Changing Fertility Intentions in China
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Puffins: Exploring how narrative, data science, and artificial intelligence enhance the study of ecology in middle school
Puffins:探索叙事、数据科学和人工智能如何增强中学生态学的学习
  • 批准号:
    2241777
  • 财政年份:
    2023
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Cultivating Tomorrow's Innovators Through Exploring Planetary Images with Artificial Intelligence
合作研究:通过人工智能探索行星图像培养明天的创新者
  • 批准号:
    2314155
  • 财政年份:
    2023
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Cultivating Tomorrow's Innovators Through Exploring Planetary Images with Artificial Intelligence
合作研究:通过人工智能探索行星图像培养明天的创新者
  • 批准号:
    2314156
  • 财政年份:
    2023
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Exploring the multiple loci of learning and computation in simple artificial neural networks
探索简单人工神经网络中学习和计算的多个位点
  • 批准号:
    EP/X017915/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Research Grant
A study on the interaction between innovation and disclosure exploring artificial intelligence techniques
探索人工智能技术的创新与披露之间的相互作用研究
  • 批准号:
    23K01672
  • 财政年份:
    2023
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Social Identities and Artificial Intelligence: Exploring the role of social identities in complex systems which include humans and machines.
社会身份和人工智能:探索社会身份在包括人类和机器在内的复杂系统中的作用。
  • 批准号:
    2894256
  • 财政年份:
    2023
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Studentship
Postdoctoral Fellowship: STEMEdIPRF: Exploring the use of Artificial Intelligence in Science Communication: Promoting Identity Development and Equitable Student Learning
博士后奖学金:STEMEdIPRF:探索人工智能在科学传播中的使用:促进身份发展和公平的学生学习
  • 批准号:
    2327418
  • 财政年份:
    2023
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
STTR Phase I: Exploring Artificial Intelligence (AI)-Enabled Skills Data For Education-to-Employment Transitions and Career Support
STTR 第一阶段:探索人工智能 (AI) 支持的技能数据,以实现从教育到就业的过渡和职业支持
  • 批准号:
    2112276
  • 财政年份:
    2022
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
FW-HTF-P: Towards Preparing Future Machinists: Exploring Tacit Knowledge in Machining with Artificial Intelligence and Extended Reality
FW-HTF-P:培养未来机械师:利用人工智能和扩展现实探索加工中的隐性知识
  • 批准号:
    2222853
  • 财政年份:
    2022
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Exploring histologic risk factors for relapse in ulcerative colitis using artificial intelligence
利用人工智能探索溃疡性结肠炎复发的组织学危险因素
  • 批准号:
    22K07992
  • 财政年份:
    2022
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了