Collaborative Research: Extreme Thermal Transport Events in Supersonic and Hypersonic Shock Wave-Turbulence Interactions

合作研究:超音速和高超音速冲击波-湍流相互作用中的极端热传输事件

基本信息

  • 批准号:
    2041618
  • 负责人:
  • 金额:
    $ 24.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

High-speed flows near or exceeding the speed of sound causes intense aerodynamic heating, which requires sophisticated thermal protection systems. The high temperatures combined with extreme flow events, such as shock waves and turbulence, reduce the life of propulsion devices, such as gas turbine engines, high performance aircraft aero-engines, scramjets, rockets, lift-off and reentry vehicles, among others. The project will address complex thermal transport processes during the interactions of shock wave and turbulence with the goal of enabling safer and more reliable aero-propulsion engines. Fundamental understanding will be promoted, along with training, teaching, and learning by means of parallel education/outreach components, such as incorporation of findings in graduate education, and presentations in symposia and conferences. Women, minority students, and undergraduate students will also participate, as well as both teachers and students from local high schools. This project seeks to improve the understanding of thermal turbulence transport by considering: (a) effects of shock wave mode, angle, orientation, and strength, and the sources and modes of shock wave unsteadiness which alter thermal transport and surface heat transfer, (b) the means whereby shock wave unsteadiness alters and propagates into subsonic boundary layer regions to affect near-wall thermal transport mechanisms and surface heat transfer, (c) effects of the strength and relative size of shock wave induced separation on thermal transport, (d) effects of shock wave compression heating, viscous friction heating, and conversion of kinetic energy to internal energy on thermal transport, and (e) resulting alterations to turbulence and scalar fluxes, second order turbulent quantities, and coherence and time lag distributions. Unsteady motions of different types of shock waves and unsteady, spatially-varying surface heat transfer and thermal transport will be considered through a coordinated experimental-computational study. A newly developed supersonic wind tunnel system will be employed, along with large eddy simulations, to provide detailed flow and thermal field characteristics. Crucial causal relationships will be clarified through understanding of: (i) associated thermal transport characteristics, (ii) spatially-dependent and frequency-dependent coherence and time lag between events at different flow conditions, (iii) highly-resolved experimental visualizations of unsteady flow features from which quantitative flow information will be determined, and (iv) spatio-temporal flow and thermal field-data from numerical predictions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
接近或超过音速的高速气流会产生强烈的空气动力加热,这需要复杂的热保护系统。高温加上激波和湍流等极端流动事件,降低了推进装置的寿命,如燃气轮机发动机、高性能飞机航空发动机、超燃冲压发动机、火箭、升空和再入飞行器等。该项目将解决激波和湍流相互作用期间复杂的热传输过程,目标是实现更安全、更可靠的航空推进发动机。将通过并行教育/外展内容,如将研究结果纳入研究生教育,以及在专题讨论会和会议上的陈述,促进基本理解以及培训、教学和学习。女性、少数民族学生和本科生以及当地高中的老师和学生也将参加。该项目旨在通过考虑以下因素来提高对热湍流传输的理解:(A)冲击波模式、角度、取向和强度的影响,以及改变热传输和表面换热的冲击波不稳定的来源和模式,(B)冲击波不稳定改变和传播到亚音速边界层区域以影响近壁热传输机制和表面换热的方法,(C)激波诱导分离的强度和相对尺寸对热传输的影响,(D)冲击波压缩加热、粘性摩擦加热和动能向内能转换对热传输的影响,以及(E)由此引起的湍流和标量通量、二阶湍流量以及相干和时滞分布的变化。不同类型激波的非定常运动和非定常、空间变化的表面换热和热输运将通过实验和计算相结合的研究来考虑。新开发的超音速风洞系统将与大涡模拟一起使用,以提供详细的流动和热场特性。关键的因果关系将通过了解:(I)相关的热传输特征,(Ii)不同流动条件下事件之间的空间相关和频率相关的一致性和时间滞后,(Iii)非定常流动特征的高分辨率实验可视化,将根据其确定定量流动信息,以及(Iv)时空流动和热场-来自数值预测的数据。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measurement and Determination of Local Film Cooling Performance Along a Transonic Turbine Blade Tip With Viscous Dissipation
具有粘性耗散的跨音速涡轮叶尖局部气膜冷却性能的测量和确定
  • DOI:
    10.1088/1361-6501/ac543d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    P. M. Ligrani, H. Collopy
  • 通讯作者:
    P. M. Ligrani, H. Collopy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Phillip Ligrani其他文献

Particulate Deposition Effects on Internal Swirl Cooling of Turbine Blades
颗粒沉积对涡轮叶片内部涡流冷却的影响
Experimental and numerical investigation of jet impingement cooling onto a rib roughened concave internal passage for leading edge cooling of a gas turbine blade
  • DOI:
    10.1016/j.ijheatmasstransfer.2024.125572
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marius Forster;Phillip Ligrani;Bernhard Weigand;Rico Poser
  • 通讯作者:
    Rico Poser
Experimental and numerical investigation of unsteady impingement cooling within a blade leading edge passage
叶片前缘通道内非稳态冲击冷却的实验和数值研究

Phillip Ligrani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Phillip Ligrani', 18)}}的其他基金

Collaborative Research: Thermal Transport in Elastic Turbulence
合作研究:弹性湍流中的热传输
  • 批准号:
    1501587
  • 财政年份:
    2014
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Transport in Elastic Turbulence
合作研究:弹性湍流中的热传输
  • 批准号:
    1336085
  • 财政年份:
    2013
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
GOALI: Surface Heat Transfer, Surface Skin Friction, and a Reynolds Analogy for Flows Over Surfaces with Real Component Roughness
GOALI:表面传热、表面蒙皮摩擦以及具有真实组件粗糙度的表面流动的雷诺类比
  • 批准号:
    0086011
  • 财政年份:
    2001
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Effects of Flow Pulsations from Potential flow Interactions and Shock Waves on Film Cooling as Applied to Gas Turbine Engines.
势流相互作用和冲击波产生的流量脉动对应用于燃气轮机发动机的气膜冷却的影响。
  • 批准号:
    9615196
  • 财政年份:
    1997
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
  • 批准号:
    2337381
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
  • 批准号:
    2337380
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
  • 批准号:
    2328947
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323728
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了