EAGER: Breaking the Speed and Accuracy Barrier for Protein Property Prediction

EAGER:打破蛋白质特性预测的速度和准确性障碍

基本信息

  • 批准号:
    2041613
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The physical structure that a protein molecule folds up into in the cell is critical to understanding the function that the protein performs in the body. Predicting this folded structure from the basic sequence of amino acids comprising the protein molecule is a key computational task in molecular biology and bioinformatics, and a subject of intense research into computer methods, due to its broad impact in the life sciences and ultimately human health. This project capitalizes on a recent breakthrough by the investigator in both the computational speed and accuracy of algorithms for predicting a discrete form of folded structure known as protein secondary structure. The project aims to further break the speed barrier for protein secondary structure prediction through faster methods for an essential algorithmic step called nearest neighbor search over a database, and to further break the accuracy barrier through more accurate methods for automatically learning the proximity measure used in nearest neighbor search. The project will impact national infrastructure through the release of open-source software tools implementing these algorithms, the training of doctoral students in research, and integrating this research into the teaching of university-level undergraduate and graduate bioinformatics courses.To achieve these goals for faster and more accurate protein secondary structure prediction and related protein property prediction tasks, the project builds on a radically-different computational approach that forgoes the costly sequence database homology searches employed by all current state-of-the-art methods, and instead leverages nearest neighbor search on fixed-length strings under a distance metric to estimate residue structure probabilities, followed by dynamic programming to compute a globally-optimal, maximum-likelihood, physically-valid, secondary structure prediction. To further break the speed and accuracy barrier, the project will develop new faster data structures for the core problem of nearest neighbor search on strings under a distance metric, and new more accurate formulations of distance metric learning for nearest-neighbor-like classification. The techniques for nearest neighbor search and distance metric learning are general, which would yield advances in these fundamental computational problems beyond the motivating bioinformatics applications of protein property prediction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质分子在细胞中折叠成的物理结构对于理解蛋白质在体内执行的功能至关重要。从组成蛋白质分子的氨基酸的基本序列预测这种折叠结构是分子生物学和生物信息学中的关键计算任务,并且由于其在生命科学和最终人类健康中的广泛影响,是计算机方法的密集研究的主题。该项目利用了研究人员最近在计算速度和算法准确性方面的突破,用于预测称为蛋白质二级结构的折叠结构的离散形式。该项目旨在进一步打破蛋白质二级结构预测的速度障碍,通过更快的方法进行数据库中称为最近邻搜索的基本算法步骤,并通过更准确的方法自动学习最近邻搜索中使用的邻近度来进一步打破准确性障碍。该项目将通过发布实现这些算法的开源软件工具、培养从事研究的博士生以及将这项研究融入大学水平的本科生和研究生生物信息学课程的教学中来影响国家基础设施,以实现更快、更准确的蛋白质二级结构预测和相关蛋白质性质预测任务的目标,该项目建立在完全不同的计算方法上,该方法放弃了所有当前最先进的方法所采用的昂贵的序列数据库同源性搜索,而是在距离度量下利用固定长度串上的最近邻搜索来估计残基结构概率,随后进行动态编程以计算全局最优、最大似然、物理有效的二级结构预测。为了进一步打破速度和准确性的障碍,该项目将开发新的更快的数据结构,用于距离度量下的字符串最近邻搜索的核心问题,以及距离度量学习的新的更准确公式,用于最近邻分类。最近邻搜索和距离度量学习的技术是通用的,这将在这些基本的计算问题上产生进展,超出了蛋白质性质预测的激励生物信息学应用。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computing Shortest Hyperpaths for Pathway Inference in Cellular Reaction Networks
计算细胞反应网络中路径推理的最短超路径
Fast Approximate Shortest Hyperpaths for Inferring Pathways in Cell Signaling Hypergraphs
用于推断细胞信号超图中路径的快速近似最短超路径
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kececioglu其他文献

Correction: Heuristic shortest hyperpaths in cell signaling hypergraphs
  • DOI:
    10.1186/s13015-022-00222-y
  • 发表时间:
    2022-12-29
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Spencer Krieger;John Kececioglu
  • 通讯作者:
    John Kececioglu

John Kececioglu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kececioglu', 18)}}的其他基金

AF: Small: Collaborative Research: Cell Signaling Hypergraphs: Algorithms and Applications
AF:小:协作研究:细胞信号超图:算法和应用
  • 批准号:
    1617192
  • 财政年份:
    2016
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
III: Small: Parameter Inference and Parameter Advising in Computational Biology
III:小:计算生物学中的参数推断和参数建议
  • 批准号:
    1217886
  • 财政年份:
    2012
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
Collaborative: EAGER: A Model Based System for the Automated Design of Synthetic Genetic Circuits by Mathematical Optimization
协作:EAGER:基于模型的系统,用于通过数学优化自动设计合成遗传电路
  • 批准号:
    1147844
  • 财政年份:
    2011
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
EAGER: An Exploratory System for Inverse Parametric Optimization
EAGER:逆参数优化的探索性系统
  • 批准号:
    1050293
  • 财政年份:
    2010
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Robust Tools for Biological Sequence Analysis
用于生物序列分析的强大工具
  • 批准号:
    0317498
  • 财政年份:
    2003
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
CAREER: Applied Algorithms for Computational Molecular Biology
职业:计算分子生物学的应用算法
  • 批准号:
    0196202
  • 财政年份:
    2001
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
CAREER: Applied Algorithms for Computational Molecular Biology
职业:计算分子生物学的应用算法
  • 批准号:
    9722339
  • 财政年份:
    1997
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
  • 批准号:
    MR/Y034007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Fellowship
Breaking the Barrier: Mapping protein interactions in the bacterial outer membrane as targets for new antimicrobials
打破障碍:绘制细菌外膜中的蛋白质相互作用作为新抗菌药物的目标
  • 批准号:
    MR/Y012453/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Research Grant
CAREER: Breaking Down the Structure-function Relationships in Enzymes that Catabolize Chlorophyll
职业:打破叶绿素分解酶的结构与功能关系
  • 批准号:
    2338329
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
Breaking Barriers: Expanding Syphilis Point-of-care Testing and Immediate Treatment to Meet the Needs of Underserved Communities
打破障碍:扩大梅毒现场检测和立即治疗,以满足服务不足社区的需求
  • 批准号:
    502789
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Directed Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Directional Phase-Resolved Broadband Observations of Breaking Waves
碎波的定向相位分辨宽带观测
  • 批准号:
    2319116
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Breaking Barriers in Multi-messenger Astrophysics: The RITTU Partnership
合作研究:打破多信使天体物理学的障碍:RITTU 合作伙伴关系
  • 批准号:
    2319326
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了