EAGER: An Exploratory System for Inverse Parametric Optimization
EAGER:逆参数优化的探索性系统
基本信息
- 批准号:1050293
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Perhaps the most prevalent scenario in science in general is reconstructing a phenomenon that is not directly observable using the data that can be measured. In biology, for example, this occurs when computing an evolutionary alignment of homologous proteins, predicting the secondary structure of a folded RNA molecule, inferring a phylogeny for a collection of taxa, recovering the regulatory network for a set of genes, or assembling the DNA sequence for a genome. These tasks are almost always modeled as optimization problems, where the optimal solution is intended to correspond to the correct reconstruction. A crucial ingredient in any such model is the objective function, whose role is to select out the correct solution as one that maximizes or minimizes the objective function. This objective function usually comes from a family of parameterized functions, and the correctness of the model can critically depend on the choice of parameter values for the function. In practice, the question of how to determine the right values for a model's parameters is both difficult and ubiquitous: improved models that better reflect the underlying biology have many parameters, but yield worse results unless their parameters are set to correct values, yet painstakingly exploring the high-dimensional parameter space to find a correct setting quickly becomes impossible. The team is looking to implement new finding of an algorithm in the area of inverse parametric optimization that can efficiently learn correct parameter values for any linear problem, such as those biology problems noted. The system readily yields efficient software for inverse shortest paths, inverse spanning trees, maximum flow, maximum matching and maximum branching, all of which have linear objective function can optimized, enabling efficient model learning for a multitude of computer science applications.The proposed work on inverse parametric optimization has extremely broad scientific impact in computer science and computational biology, as our techniques efficiently solve inverse optimization for any problem with a linear objective function. The PI will also create a new combined course that is an integral part of a new interdisciplinary degree program.
也许科学中最普遍的情况是使用可以测量的数据重建一种无法直接观察到的现象。 例如,在生物学中,当计算同源蛋白质的进化比对、预测折叠RNA分子的二级结构、推断一组分类群的同源性、恢复一组基因的调控网络或组装基因组的DNA序列时,都会发生这种情况。这些任务几乎总是被建模为优化问题,其中最优解旨在对应于正确的重建。在任何这样的模型中,一个关键的组成部分是目标函数,它的作用是选择出正确的解决方案,使目标函数最大化或最小化。该目标函数通常来自于一系列参数化函数,并且模型的正确性可以关键地取决于函数的参数值的选择。在实践中,如何确定模型参数的正确值的问题既困难又普遍存在:更好地反映潜在生物学的改进模型具有许多参数,但除非将其参数设置为正确的值,否则会产生更差的结果,然而煞费苦心地探索高维参数空间以快速找到正确的设置变得不可能。该团队正在寻求在逆参数优化领域实现一种算法的新发现,该算法可以有效地学习任何线性问题的正确参数值,例如上述生物学问题。该系统很容易产生有效的软件逆最短路径,逆生成树,最大流,最大匹配和最大分支,所有这些都具有线性目标函数可以优化,使高效的模型学习的众多计算机科学应用。因为我们的技术有效地解决了具有线性目标函数的任何问题的逆优化。 PI还将创建一个新的综合课程,这是一个新的跨学科学位课程的一个组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Kececioglu其他文献
Correction: Heuristic shortest hyperpaths in cell signaling hypergraphs
- DOI:
10.1186/s13015-022-00222-y - 发表时间:
2022-12-29 - 期刊:
- 影响因子:1.700
- 作者:
Spencer Krieger;John Kececioglu - 通讯作者:
John Kececioglu
John Kececioglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Kececioglu', 18)}}的其他基金
EAGER: Breaking the Speed and Accuracy Barrier for Protein Property Prediction
EAGER:打破蛋白质特性预测的速度和准确性障碍
- 批准号:
2041613 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Cell Signaling Hypergraphs: Algorithms and Applications
AF:小:协作研究:细胞信号超图:算法和应用
- 批准号:
1617192 - 财政年份:2016
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
III: Small: Parameter Inference and Parameter Advising in Computational Biology
III:小:计算生物学中的参数推断和参数建议
- 批准号:
1217886 - 财政年份:2012
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Collaborative: EAGER: A Model Based System for the Automated Design of Synthetic Genetic Circuits by Mathematical Optimization
协作:EAGER:基于模型的系统,用于通过数学优化自动设计合成遗传电路
- 批准号:
1147844 - 财政年份:2011
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Robust Tools for Biological Sequence Analysis
用于生物序列分析的强大工具
- 批准号:
0317498 - 财政年份:2003
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
CAREER: Applied Algorithms for Computational Molecular Biology
职业:计算分子生物学的应用算法
- 批准号:
0196202 - 财政年份:2001
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
CAREER: Applied Algorithms for Computational Molecular Biology
职业:计算分子生物学的应用算法
- 批准号:
9722339 - 财政年份:1997
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
相似海外基金
Beyond Query: Exploratory Subgraph Discovery and Search System
超越查询:探索性子图发现和搜索系统
- 批准号:
DP240101591 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Discovery Projects
The exploratory study of flow separation and biochemical conversion system of lignin in the water phase
木质素水相流动分离及生化转化体系探索性研究
- 批准号:
20K21333 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Exploratory study of the relationship between predictive processing of the autonomic nervous system and symptoms of psychiatric disorders
自主神经系统的预测处理与精神疾病症状之间关系的探索性研究
- 批准号:
19K21819 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Exploratory Research for Establishing the Law of Payment System by Integrating Credit Theory of Money and Theory of Negotiable Instruments
货币信用理论与票据理论相结合建立支付制度法的探索
- 批准号:
18K01369 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental theory on the exploratory analytics and the machine-learning scenario construction process, and experimental study on their system frameworks
探索性分析和机器学习场景构建过程的基础理论及其系统框架的实验研究
- 批准号:
18H03293 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploratory study of CMOS integrated microfluidics mechanism for innovative 3D-LSI cooling system
创新3D-LSI冷却系统CMOS集成微流控机制的探索性研究
- 批准号:
17J04382 - 财政年份:2017
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
An exploratory study on what kind of tuition fee level and scholarship system can be obtained social consensus in Japan
日本什么样的学费水平和奖学金制度才能获得社会共识的探索
- 批准号:
15K04346 - 财政年份:2015
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploratory research on the applicability of human big data collection system for analyzing classroom communication
人体大数据采集系统分析课堂交流的适用性探索性研究
- 批准号:
26380865 - 财政年份:2014
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Exploratory Study for a Complex Adaptive System Testbed
EAGER:复杂自适应系统测试台的探索性研究
- 批准号:
1349818 - 财政年份:2013
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
An exploratory study on the new consultation system for school management in order to enhance a relationship between school and local community
探索新的学校管理咨询制度以加强学校与当地社区的关系
- 批准号:
23653243 - 财政年份:2011
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




