RUI: DEVELOPING A PREDICTIVE MODEL OF STRAIN ACCOMMODATION FOR SEGMENTED NORMAL FAULT EVOLUTION, SEVIER FAULT ZONE, SOUTHERN UTAH

RUI:开发分段正断层演化的应变调节预测模型,塞维尔断层带,犹他州南部

基本信息

  • 批准号:
    2042114
  • 负责人:
  • 金额:
    $ 19.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

When tectonic stresses build within the Earth’s crust, faults form to relieve those stresses. These faults move bodies of rock past each other, commonly resulting in earthquakes that cause significant damage to nearby areas. Faults that produce large earthquakes are commonly composed of many smaller fault segments that interact with each other. These fault segments affect the rock around them, fracturing it such that fluids can more easily flow below the ground surface; fluid flow in this context has implications for geothermal energy, groundwater flow, and petroleum resources. This project will investigate the Sevier fault zone in southern Utah and develop a predictive model of fault zone development that can be used to address issues related to earthquake hazards and to better target potential energy resources. The project will integrate field instruction, field research, and computer modeling, to help undergraduate researchers learn fundamental geological processes in the context of their own research. The PI will recruit and retain research students from under-represented groups and will measure student learning throughout the research process. All scientific and educational results from this project will be disseminated as broadly as possible.This project will investigate the kinematic and dynamic evolution of segmented normal faults, which is critical for the assessment of earthquake hazard, energy resources, and groundwater flow and storage. The project team will use a range of methods to elucidate the relationship between mechanical stratigraphy, structural position relative to propagating fault segments, and damage zone evolution during segment propagation and linkage. Field and remote-sensing methods will be integrated with petrographic analysis, mechanical stratigraphy, and structure-from-motion (SfM) modeling to develop testable models of fault zone evolution. The variations in fault segment and relay ramp geometries along the Sevier fault zone, related to changes in along-strike fault displacement, will provide an opportunity to document the sequential development of fractures, deformation bands, and minor faults during segmented fault zone evolution. Computer kinematic and dynamic modeling of documented fault geometries and displacements will permit hypothesis testing in the context of collected field data. This project will provide a new and detailed understanding of how permeability evolves during segmented fault zone evolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当地壳内部产生构造应力时,就会形成断层来缓解这些应力。 这些断层使岩石体相互移动,通常会导致地震,对附近地区造成重大破坏。 产生大地震的断层通常由许多相互作用的较小断层段组成。 这些断层段会影响周围的岩石,使其断裂,使流体更容易在地表以下流动;这种情况下的流体流动对地热能,地下水流和石油资源都有影响。 该项目将调查犹他州南部的塞维尔断层带,并开发断层带发展的预测模型,可用于解决与地震灾害有关的问题,并更好地瞄准潜在的能源资源。 该项目将整合实地教学,实地研究和计算机建模,以帮助本科研究人员在自己的研究背景下学习基本的地质过程。 PI将从代表性不足的群体中招募和留住研究生,并将在整个研究过程中衡量学生的学习情况。 该项目的所有科学和教育成果将尽可能广泛地传播,该项目将研究分段正断层的运动学和动力学演变,这对评估地震灾害、能源、地下水流动和储存至关重要。项目团队将使用一系列方法来阐明机械地层学、相对于传播断层段的构造位置以及断层段传播和连接过程中的损伤区演化之间的关系。 野外和遥感方法将与岩石学分析、机械地层学和运动恢复构造(SfM)建模相结合,以开发可测试的断裂带演化模型。 断层段和中继坡道几何形状的变化沿着塞维尔断层带,沿走向断层位移的变化有关,将提供一个机会,记录断裂,变形带,小故障的顺序发展分段断层带演化过程中。 记录的断层几何形状和位移的计算机运动学和动力学建模将允许在收集的现场数据的背景下进行假设检验。 该项目将提供一个新的和详细的了解如何渗透率在分段断层带演变的演变。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The role of fracture branching in the evolution of fracture networks: An outcrop study of the Jurassic Navajo sandstone, southern Utah
  • DOI:
    10.1016/j.jsg.2022.104664
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    B. Surpless;Caroline McKeighan
  • 通讯作者:
    B. Surpless;Caroline McKeighan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Surpless其他文献

Complex Segment Linkage Along the Sevier Normal Fault, Southwestern Utah
犹他州西南部塞维尔正断层沿线的复杂分段联系
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Wanda J. Taylor;Benjamin Surpless;Ilsa M. Schiefelbein Kerscher
  • 通讯作者:
    Ilsa M. Schiefelbein Kerscher

Benjamin Surpless的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Surpless', 18)}}的其他基金

RUI: Coupled Fold-fracture Evolution in the Stillwell Anticline, West Texas
RUI:西德克萨斯州斯蒂尔韦尔背斜的耦合褶皱-断裂演化
  • 批准号:
    1220235
  • 财政年份:
    2012
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Continuing Grant

相似海外基金

RUI: Developing Predictive Guidelines to Stabilize Gold Nanoparticles with Peptoids
RUI:制定用类肽稳定金纳米粒子的预测指南
  • 批准号:
    2305190
  • 财政年份:
    2023
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant
Developing a Predictive Understanding of Soot Formation in Wildfires
对野火中烟灰形成的预测性了解
  • 批准号:
    2328647
  • 财政年份:
    2023
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Standard Grant
Understanding the immune landscape and developing predictive biomarkers for HNSCC treated with ICIs
了解 ICI 治疗 HNSCC 的免疫状况并开发预测生物标志物
  • 批准号:
    23K14654
  • 财政年份:
    2023
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing sex-specific predictive models for preeclampsia
开发先兆子痫的性别特异性预测模型
  • 批准号:
    490970
  • 财政年份:
    2023
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Operating Grants
Developing Personalized Predictive Models of Aggression
开发个性化的攻击性预测模型
  • 批准号:
    10662685
  • 财政年份:
    2023
  • 资助金额:
    $ 19.28万
  • 项目类别:
Collecting the data for, and developing a predictive model to identify lapse and relapse to support people who want to change their relationship with alcohol
收集数据并开发预测模型来识别戒酒和复发,以支持那些想要改变与酒精关系的人
  • 批准号:
    10045638
  • 财政年份:
    2022
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Grant for R&D
Developing new predictive models to automate the generation of personalised actions to improve home efficiencies
开发新的预测模型以自动生成个性化操作,从而提高家庭效率
  • 批准号:
    10043143
  • 财政年份:
    2022
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Grant for R&D
Developing a predictive model for building a digital twin for electron beam powder bed fusion of TiB-strengthened Ti alloys
开发预测模型,用于构建 TiB 强化钛合金电子束粉末床熔合的数字孪生
  • 批准号:
    22K03836
  • 财政年份:
    2022
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Developing a platform for superior predictive analysis of HERG Ion Channel-Drug Interactions for the Comprehensive In-vitro Proarrhythmia Assay (CiPA)
SBIR II 期:开发一个平台,对 HERG 离子通道-药物相互作用进行高级预测分析,用于综合体外致心律失常测定 (CiPA)
  • 批准号:
    2151522
  • 财政年份:
    2022
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Cooperative Agreement
Smart Discharges for Mom+Baby: Saving mother-newborn dyads by developing a predictive risk model to identify vulnerable dyads and guide delivery of evidence-based, locally-informed interventions for targeted post-discharge care.
母婴智能出院:通过开发预测风险模型来识别脆弱的二人组并指导提供基于证据的、当地知情的干预措施以实现有针对性的出院后护理,从而拯救母婴二人组。
  • 批准号:
    443386
  • 财政年份:
    2021
  • 资助金额:
    $ 19.28万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了