Developing Personalized Predictive Models of Aggression
开发个性化的攻击性预测模型
基本信息
- 批准号:10662685
- 负责人:
- 金额:$ 18.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAgeAggressive behaviorAngerBehaviorBehavior ControlBehavior DisordersBiologicalCellular PhoneComplexComputing MethodologiesDataData ReportingDetectionDevelopmentDiagnosisDiagnosticEtiologyFamilyFutureGoalsHeart RateHeterogeneityIndividualInterventionLifeMachine LearningMeasurementMental disordersMentorsMentorshipMethodologyMethodsModelingMotivationNational Institute of Mental HealthNatureParticipantPatient Self-ReportPatternPersonality TraitsPersonsPhenotypePhysiologicalPositioning AttributePreventionProcessProtocols documentationPsychological ModelsPsychopathologyPublic HealthResearchResearch DesignResearch EthicsResourcesRiskRisk FactorsSamplingScientific InquiryScientistSelection CriteriaSocial EnvironmentSurveysSystemTechnologyTestingTimeTrainingUniversitiesYouthadaptive interventionaggression preventionanalytical methodbehavioral phenotypingcareerdata streamseconomic impacteffective therapyemotion regulationforestgradient boostinghigh risk populationimprovedinclusion criteriainnovationmachine learning methodmobile sensingnovelpersonalized interventionpersonalized medicinepersonalized predictionspredictive modelingpredictive toolsprogramsprospectivepsychologicrandom forestreal time monitoringrecruitresearch studysensorskillssmartphone based devicetheorieswearable deviceyoung adult
项目摘要
PROJECT SUMMARY/ABSTRACT
Aggressive behavior is a transdiagnostic indicator of both youth and adult psychiatric disorders and a
significant public health concern due to the direct harms to victims and its broader economic impact.
Nonetheless, prediction of aggressive behavior is challenging due to significant variability in how, why, and
when people act aggressively. This heterogeneity impedes efforts to establish etiological factors, identify
biological substrates, and develop uniformly effective treatments. Though theories of aggression emphasize
that it is a context-dependent, dynamic interpersonal behavior, research rarely attempts to study aggression in
the contexts where it normally occurs and is most consequential (i.e., daily life). The current project seeks to
improve on past research by studying the transdiagnostic mechanisms of aggression using novel analytic and
measurement methodology necessary for pursuing a personalized medicine approach in aggressive behavior
research and prevention. This project will use real-time data capture in conjunction with state-of-the-art analytic
methods to deconstruct the heterogeneous behavioral phenotypes that relate to aggression. To achieve this,
we will use relevant passively-sensed and self-reported data via smartphones from a sample of young adults
(age=18-30; N=150) diagnosed with mental and behavioral disorders and at elevated risk for aggression. Data
will be collected over the course of a 3-week ambulatory assessment protocol. We will apply machine learning
methods capable of uncovering and modeling the complex dynamic processes observed in aggression at the
level of each individual (i.e., personalized models) to prospectively predict aggressive urges and behavior. The
results will pave the way for scalable just-in-time adaptive interventions tailored to an individual’s specific
antecedents of aggression. The proposed study will contribute to NIMH Strategic Priorities 3.2 by 1) focusing
on personalized models that can accommodate the complex topography of aggression and its antecedents and
2) applying innovative computational approaches (i.e., machine learning) to multiple streams of data (passively
sensed, self-report) to identify potential just-in-time intervention targets for aggressive individuals. The
comprehensive research and training plan detailed in this proposal will allow this candidate to address the
primary research questions of the proposal and develop the expertise necessary to be an independent
scientist. Specifically, this candidate will receive training in 1) personalized models of psychopathology and
aggression; 2) methods for carrying out EMA-based studies and modeling intensive longitudinal data; and 3)
collecting, processing, and predictive modeling with passive sensor data. This candidate has assembled a
team of expert mentors (Wright, Jacobson) and consultants who possess the expertise to supervise the project
and provide the training necessary to support the candidate in his development as an independent scientist.
The expertise of the mentorship team, and the resources offered by the University of Pittsburgh, place the
candidate in an ideal position to achieve his training, research, and career goals.
项目摘要/摘要
攻击性行为是青少年和成人精神障碍的跨诊断指标,
由于对受害者的直接伤害及其更广泛的经济影响,对公共卫生造成重大关切。
尽管如此,由于攻击性行为的方式、原因和方式存在显著的差异,因此对攻击性行为的预测具有挑战性
当人们表现得咄咄逼人的时候。这种异质性阻碍了确定病因、识别
生物基质,并开发统一有效的治疗方法。尽管攻击性理论强调
认为它是一种依赖于语境的、动态的人际行为,研究很少尝试在
它通常发生的和最重要的上下文(即日常生活)。目前的项目寻求
在过去研究的基础上,利用新的分析和分析方法研究攻击行为的跨诊断机制
在攻击性行为中追求个性化医学方法所需的测量方法
研究和预防。该项目将使用实时数据捕获和最先进的分析
方法解构与攻击性相关的异质行为表型。为了实现这一目标,
我们将通过智能手机使用来自年轻人样本的相关被动感知和自我报告的数据
(年龄18-30岁;N=150)被诊断为精神和行为障碍,攻击风险增加。数据
将在为期3周的门诊评估过程中收集。我们将应用机器学习
能够揭示和模拟在攻击中观察到的复杂动态过程的方法
每个人的水平(即,个性化的模型),以前瞻性地预测攻击性冲动和行为。这个
结果将为可扩展的即时适应性干预铺平道路,这些干预措施根据个人的具体情况量身定做
侵略的前科。拟议的研究将有助于NIMH战略优先事项3.2通过1)重点
关于能够适应攻击及其前因和复杂地形的个性化模型
2)将创新的计算方法(即,机器学习)应用于多个数据流(被动
感知、自我报告),以确定针对攻击性个人的潜在及时干预目标。这个
本提案中详细说明的全面研究和培训计划将使该候选人能够解决
提案的主要研究问题,并开发成为独立专家所需的专业知识
科学家。具体地说,这位候选人将接受1)个性化精神病理学模型和
攻击性;2)基于EMA的研究和密集纵向数据建模的方法;3)
使用被动传感器数据收集、处理和预测建模。这位候选人已经召集了一位
由专家导师(Wright、Jacobson)和顾问组成的团队,他们拥有监督项目的专业知识
并提供必要的培训,以支持候选人作为独立科学家的发展。
导师团队的专业知识,以及匹兹堡大学提供的资源,使
处于理想职位的候选人,能够实现他的培训、研究和职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Vize其他文献
Colin Vize的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)