CAREER: Analytic and Spectral Methods in Combinatorics
职业:组合学中的分析和谱方法
基本信息
- 批准号:2044606
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This CAREER award supports research in combinatorics. The PI aims to develop and apply novel analytic and spectral methods designed for a variety of extremal problems in discrete mathematics. Such investigations ask, for example, how large a set (of points, vectors, integers, etc.) satisfying certain combinatorial properties can be. Results have applications in number theory, computer science, and other fields. Analytic and spectral methods already play central roles in the field; this project will lead to new techniques with further applications in combinatorics and beyond. The project also will have an educational component, including graduate student mentorship and course development.One of the directions of research concerns eigenvalue multiplicities and applications to equiangular lines, spherical two-distance sets, and more generally spherical codes in high dimensions. The PI recently solved a longstanding problem on equiangular lines via new insights in spectral graph theory, paving the way for further developments on high dimensional spherical codes via more generalized spectral graph theoretic problems. A second direction concerns extremal problems in graph theory and additive combinatorics, focusing on techniques connecting the two areas. The PI will study sparse regularity methods, graph homomorphism density inequalities (for example Sidorenko’s conjecture), extremal problems in hypergraphs, and related topics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个职业奖支持组合学的研究。PI旨在开发和应用新的分析和谱方法,用于离散数学中的各种极值问题。例如,这样的调查会问一个(点、向量、整数等)集合有多大。满足一定的组合性质。结果在数论、计算机科学和其他领域都有应用。分析和谱方法已经在该领域发挥了核心作用;该项目将导致新技术在组合学及其他领域的进一步应用。该项目还将有一个教育部分,包括研究生导师和课程开发。研究方向之一涉及本征值多重性和应用于等角线,球面双距离集,以及更普遍的高维球面码。PI最近通过谱图理论的新见解解决了等角线上的一个长期问题,为通过更广义的谱图理论问题进一步发展高维球形码铺平了道路。第二个方向涉及图论和添加剂组合学中的极值问题,专注于连接这两个领域的技术。PI将研究稀疏正则性方法、图同态密度不等式(例如Sidorenko猜想)、超图中的极值问题以及相关主题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graphs with high second eigenvalue multiplicity
具有高第二特征值重数的图
- DOI:10.1112/blms.12647
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Haiman, Milan;Schildkraut, Carl;Zhang, Shengtong;Zhao, Yufei
- 通讯作者:Zhao, Yufei
Exploring a Planet, Revisited
重新探索行星
- DOI:10.1080/00029890.2022.2071569
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhao, Yufei
- 通讯作者:Zhao, Yufei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufei Zhao其他文献
A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism
通过分子猝灭/中介机制的长寿命锂氧电池
- DOI:
10.1126/sciadv.abm1899 - 发表时间:
2021-06 - 期刊:
- 影响因子:13.6
- 作者:
Jinqiang Zhang;Yufei Zhao;Bing Sun;Yuan Xie;Anastasia Tkacheva;Feilong Qiu;Ping He;Haoshen Zhou;Kang Yan;Xin Guo;Shijian Wang;Andrew M. McDonagh;Zhangquan Peng;Jun Lu;Guoxiu Wang - 通讯作者:
Guoxiu Wang
On Regularity Lemmas and their Algorithmic Applications
论正则引理及其算法应用
- DOI:
10.1017/s0963548317000049 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
J. Fox;L. Lovász;Yufei Zhao - 通讯作者:
Yufei Zhao
Compound angular lens for radio orbital angular momentum coaxial separation and convergence
用于无线电轨道角动量同轴分离和会聚的复合角透镜
- DOI:
10.1109/lawp.2019.2939345 - 发表时间:
2019 - 期刊:
- 影响因子:4.2
- 作者:
Yufei Zhao;Chao Zhang - 通讯作者:
Chao Zhang
Set-Coloring Ramsey Numbers and Error-Correcting Codes Near the Zero-Rate Threshold
设置着色拉姆齐数和接近零速率阈值的纠错码
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.5
- 作者:
D. Conlon;J. Fox;H. Pham;Yufei Zhao - 通讯作者:
Yufei Zhao
Mechanical properties and analytic solutions of prestressed linings with un-bonded annular anchors under internal water loading
内水荷载作用下无粘结环形锚杆预应力衬砌力学性能及解析解
- DOI:
10.1016/j.tust.2019.103244 - 发表时间:
2020-03 - 期刊:
- 影响因子:6.9
- 作者:
Yujie Wang;Ruilang Cao;Jin Pi;Long Jiang;Yufei Zhao - 通讯作者:
Yufei Zhao
Yufei Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufei Zhao', 18)}}的其他基金
Random and pseudorandom structures and their applications
随机和伪随机结构及其应用
- 批准号:
1362326 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
A new paradigm for spectral localisation of operator pencils and analytic operator-valued functions
算子铅笔谱定位和解析算子值函数的新范式
- 批准号:
EP/T000902/1 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Workshop on Analytic and Computational Techniques in Spectral Theory and Related Topics
谱理论及相关主题的分析和计算技术研讨会
- 批准号:
EP/H032274/1 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Uniqueness and Convergence of Analytic Integrals in Harmonic and Spectral Analysis
调和与谱分析中解析积分的唯一性和收敛性
- 批准号:
0800300 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Sixth Gregynog workshop on Analytic and Computational Techniques in Spectral Theory and Related Topics
第六届 Gregynog 谱论分析和计算技术及相关主题研讨会
- 批准号:
EP/D068541/1 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Analytic multifunctions and spectral theory
解析多功能和谱理论
- 批准号:
249678-2002 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Spectral Properties of Geometric Operators (B06)
几何算子的解析和谱性质(B06)
- 批准号:
5444884 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research Centres
The Analytic Theory of Division Fields and Spectral L-functions
除法域和谱L函数的解析理论
- 批准号:
0355564 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Analytic multifunctions and spectral theory
解析多功能和谱理论
- 批准号:
249678-2002 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Analytic multifunctions and spectral theory
解析多功能和谱理论
- 批准号:
249678-2002 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Analytic multifunctions and spectral theory
解析多功能和谱理论
- 批准号:
249678-2002 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




