CAREER: Cognitively-Informed Memory Models for Language-Capable Robots

职业:具有语言能力的机器人的认知信息记忆模型

基本信息

  • 批准号:
    2044865
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-15 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Robots that can communicate with people through spoken language stand to advance the future of human work and to assist the most vulnerable members of society, including children and older adults, people with disabilities, autism, or mental illness, and people experiencing isolation, bullying, or trauma. One of the key tasks that robots will need to do when talking with everyday people is referring expression generation, which is the process of creating descriptions like "the office at the end of the hallway." When robots generate such descriptions, they need to do so in a way that is accurate (the description shouldn't be wrong), natural (the description shouldn't sound awkward), understandable (the listener should be able to interpret the description quickly and effortlessly), and efficient (the robot should be able to generate the description without having to pause and think for too long). To understand how robots might generate descriptions in a way that satisfies these properties, we can start by trying to understand how people do so. One reason we are good at generating referring expressions may be because of our working, or short term, memory, which we use to keep a small amount of timely and important information available in a way that we can quickly and effortlessly access. The key idea of this project is to give robots the same type of working memory capabilities, and the same ways of thinking about what might be in peoples' working memories, so they will be able to use that timely and important information to do a better job at generating referring expressions. By taking this cognitively inspired approach, this work will advance the state of the art of multiple fields, including AI, robotics, and psychology. In addition, the educational aspect of this project aims to develop materials that will help train the next generation of students working at the intersection of these fields. To ensure the broadest possible impact, these efforts will be integrated with the PI's department's activities relating to Broadening Participation in Computing so that they reach currently underrepresented groups. From a technical perspective, the key goal of this research is to show how models of working memory that appropriately cache task-relevant beliefs about goal-relevant objects will enable robots to better perform referring expression generation. To this end, the work will assess two key hypotheses: that cognitively inspired models of working memory will enable robots to generate referring expressions in a way that is more accurate, natural, computationally efficient to generate, and cognitively efficient for the listener to process; and that goal relevance can be leveraged to ensure that the most task-relevant information is retained within those models. By addressing these hypotheses, the research will develop: (1) the first algorithms for referring expression generation in robot cognitive architectures that are informed by current psychological theories of human working memory; (2) a fundamental new understanding of how robots can intelligently manage and allocate resources within artificial working memory models, (3) an understanding of which memory models will produce optimal performance from both robotics and cognitive modeling perspectives; (4) fundamental new understanding of how the goal relevance of entities and their properties can be automatically assessed within integrated cognitive architectures; (5) understanding of how goal relevance can be used to allocate cognitive resources within robotic models of working memory; (6) understanding of which goal-driven resource allocation strategies will produce optimal performance from both robotics and cognitive modeling perspectives; and (7) freely-available datasets of human-robot dialogues, and a freely-available experimental framework to allow other researchers to collect additional such dialogues, both of which will be permanently archived via the Open Science Framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够通过口语与人交流的机器人将推动人类工作的未来,并帮助社会中最弱势的成员,包括儿童和老年人、残疾人、自闭症或精神疾病患者以及经历孤立、欺凌的人。或创伤。机器人在与普通人交谈时需要做的一个关键任务是指涉表达生成,这是创建像“走廊尽头的办公室”这样的描述的过程。“当机器人生成这样的描述时,它们需要以一种准确的方式(描述不应该是错误的),自然的(描述不应该听起来很尴尬),可理解的(听众应该能够快速轻松地解释描述)和高效的(机器人应该能够生成描述而不必暂停和思考太久)。为了理解机器人如何以满足这些属性的方式生成描述,我们可以从尝试理解人类如何做到这一点开始。我们善于生成指称表达的一个原因可能是因为我们的工作记忆,或短期记忆,我们用它来保持少量的及时和重要的信息,以一种我们可以快速和毫不费力地访问的方式。这个项目的关键思想是赋予机器人相同类型的工作记忆能力,以及思考人类工作记忆中可能存在的内容的相同方式,因此它们将能够使用及时和重要的信息来更好地生成指称表达。通过采用这种认知启发的方法,这项工作将推进多个领域的艺术发展,包括人工智能,机器人和心理学。此外,该项目的教育方面旨在开发材料,帮助培训在这些领域交叉工作的下一代学生。为了确保尽可能广泛的影响,这些努力将与PI部门有关扩大参与计算的活动相结合,以便他们达到目前代表性不足的群体。从技术的角度来看,这项研究的主要目标是显示工作记忆的模型,适当地缓存任务相关的信念目标相关的对象将使机器人更好地执行引用表达式生成。为此,这项工作将评估两个关键假设:工作记忆的认知启发模型将使机器人能够以更准确,自然,计算效率更高的方式生成引用表达式,并且可以利用目标相关性来确保最相关的信息保留在这些模型中。通过解决这些假设,本研究将开发:(1)第一个算法,用于在机器人认知架构中引用表达生成,这些算法由当前人类工作记忆的心理学理论提供信息;(2)对机器人如何在人工工作记忆模型中智能地管理和分配资源的基本新理解,(3)从机器人和认知建模的角度理解哪些记忆模型将产生最佳性能;(四)对实体及其属性的目标相关性如何在综合认知框架内自动评估的基本新理解建筑;(5)理解目标相关性如何用于在工作记忆的机器人模型内分配认知资源;(6)理解哪些目标驱动的资源分配策略将从机器人学和认知建模的角度产生最佳性能;以及(7)免费提供的人类-机器人对话数据集,以及一个免费提供的实验框架,允许其他研究人员收集更多的此类对话,这两个奖项都将通过开放科学框架永久存档。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Eye of the Robot Beholder: Ethical Risks of Representation, Recognition, and Reasoning over Identity Characteristics in Human-Robot Interaction
机器人旁观者之眼:人机交互中身份特征的表示、识别和推理的道德风险
  • DOI:
    10.1145/3568294.3580031
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Williams, Tom
  • 通讯作者:
    Williams, Tom
Rube-Goldberg Machines, Transparent Technology, and the Morally Competent Robot
鲁布-戈德堡机器、透明技术和有道德能力的机器人
The Importance of Memory for Language-Capable Robots
记忆对于具有语言能力的机器人的重要性
  • DOI:
    10.1145/3611687
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Silva, Rafael Sousa;Han, Zhao;Williams, Tom
  • 通讯作者:
    Williams, Tom
Enabling Human-like Language-Capable Robots Through Working Memory Modeling
通过工作记忆建模实现具有类人语言能力的机器人
Community Futures With Morally Capable Robotic Technology
具有道德能力的机器人技术的社区未来
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Williams其他文献

UVAE: Integration of Heterogeneous Unpaired Data with Imbalanced Classes
UVAE:异构不成对数据与不平衡类的集成
  • DOI:
    10.1101/2023.12.18.572157
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mike Phuycharoen;Verena Kaestele;Thomas Williams;Lijing Lin;Tracy Hussell;John Grainger;Magnus Rattray
  • 通讯作者:
    Magnus Rattray
BronchStart Study Extended Data
BronchStart 研究扩展数据
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Williams
  • 通讯作者:
    Thomas Williams
Évaluation de la longueur du tendon du semi-tendineux en fonction de paramètres cliniques. Analyse et application clinique
  • DOI:
    10.1016/j.rcot.2013.09.148
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Williams;Aude Griffart;Philippe Colombet
  • 通讯作者:
    Philippe Colombet
3122 – DYNAMIC REGULATION OF HIERARCHICAL HETEROGENEITY IN ACUTE MYELOID LEUKAEMIA, SERVES AS A TUMOUR IMMUNOEVASION MECHANISM.
  • DOI:
    10.1016/j.exphem.2020.09.131
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Constandina Pospori;William Grey;Shayin Gibson;Sara Gonzalez-Anton;Thomas Williams;Christiana Georgiou;Flora Birch;Myriam Haltalli;Maria-Nefeli Skoufou-Papoutsaki;Georgia Stevens;Katherine Sloan;Reema Khorshed;Francesca Hearn-Yeates;Jack Hopkins;Chrysi Christodoulidou;Dimitrios Stampoulis;Hans Stauss;Ronjon Chakraverty;Dominique Bonnet;Cristina Lo Celso
  • 通讯作者:
    Cristina Lo Celso
Investigating the relationship between thalamic iron concentration and disease severity in secondary progressive multiple sclerosis using quantitative susceptibility mapping: Cross-sectional analysis from the MS-STAT2 randomised controlled trial
  • DOI:
    10.1016/j.ynirp.2024.100216
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Williams;Nevin John;Alberto Calvi;Alessia Bianchi;Floriana De Angelis;Anisha Doshi;Sarah Wright;Madiha Shatila;Marios C. Yiannakas;Fatima Chowdhury;Jon Stutters;Antonio Ricciardi;Ferran Prados;David MacManus;Francesco Grussu;Anita Karsa;Becky Samson;Marco Battiston;Claudia A.M. Gandini Wheeler-Kingshott;Karin Shmueli
  • 通讯作者:
    Karin Shmueli

Thomas Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Williams', 18)}}的其他基金

Tracing the origin and diversification of a morphological trait through transcriptional regulators and their target genes
通过转录调节因子及其靶基因追踪形态性状的起源和多样化
  • 批准号:
    2211833
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Role-Based Norm Violation Response in Human-Robot Teams
CHS:小型:协作研究:人机团队中基于角色的规范违规响应
  • 批准号:
    1909847
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MICA: Hydroxyurea - Pragmatic Reduction In Mortality and Economic burden (H-PRIME)
MICA:羟基脲 - 务实降低死亡率和经济负担 (H-PRIME)
  • 批准号:
    MR/S004904/1
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
S&AS: FND: Context-Aware Ethical Autonomy for Language Capable Robots
S
  • 批准号:
    1849348
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: APERTURE: Augmented Reality based Perception-Sensitive Robotic Gesture
CHS:小型:协作研究:APERTURE:基于增强现实的感知敏感机器人手势
  • 批准号:
    1909864
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CRI: II-New: Infrastructure for Robust Interactive Underground Robots
CRI:II-新:强大的交互式地下机器人基础设施
  • 批准号:
    1823245
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the gene regulatory network alterations responsible for the repeated evolution of a Hox-regulated trait
合作研究:解决导致 Hox 调控性状重复进化的基因调控网络改变
  • 批准号:
    1555906
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: The structure, function, and evolution of a regulatory network controlling sexually dimorphic fruit fly development
合作研究:控制性二态性果蝇发育的调控网络的结构、功能和进化
  • 批准号:
    1146373
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似海外基金

Cognitively engaging walking exercise and neuromodulation to enhance brain function in older adults
认知性步行锻炼和神经调节可增强老年人的大脑功能
  • 批准号:
    10635832
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Odor memory and functional neuroimaging in cognitively impaired older adults and Alzheimer's disease
认知障碍老年人和阿尔茨海默病的气味记忆和功能神经影像
  • 批准号:
    10590472
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
SaTC: CORE: Small: Amplifying Deepfake Detection by Humans Using Cognitively-Inspired Interfaces
SaTC:核心:小:使用认知启发的界面放大人类的 Deepfake 检测
  • 批准号:
    2319025
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Cerebral Blood Flow, Angiogenesis, and Mitochondrial Dysfunction in Cognitively Impaired Patients Undergoing Exercise and Anodal Transcranial Direct Current Stimulation
接受运动和阳极经颅直流电刺激的认知障碍患者的脑血流、血管生成和线粒体功能障碍
  • 批准号:
    497968
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Creating Cognitively-demanding, Conceptually-focused Coding Opportunities in Mathematics and Science
在数学和科学领域创造认知要求高、注重概念的编码机会
  • 批准号:
    2318287
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
PET imaging of microtubules in cognitively normal and impaired older adults
认知正常和受损老年人的微管 PET 成像
  • 批准号:
    10915761
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
The impact of neighborhood greenspace on cognitively healthy life years and structural markers of brain health
邻里绿地对认知健康生命年和大脑健康结构标志的影响
  • 批准号:
    10425651
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
Cognitively Defined Alzheimer's Subgroups: Natural history, neuropathology, and life course ramifications
认知定义的阿尔茨海默病亚组:自然史、神经病理学和生命历程的影响
  • 批准号:
    10672371
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
COG-MHEAR: Towards cognitively-inspired 5G-IoT enabled, multi-modal Hearing Aids
COG-MHEAR:迈向受认知启发的 5G-IoT 支持的多模式助听器
  • 批准号:
    EP/T021063/1
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Computational neuroscience modelling of cognitively healthy aging and Alzheimer's disease
认知健康衰老和阿尔茨海默病的计算神经科学模型
  • 批准号:
    451686
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了