S&AS: FND: Context-Aware Ethical Autonomy for Language Capable Robots

S

基本信息

  • 批准号:
    1849348
  • 负责人:
  • 金额:
    $ 57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-15 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Robots are being increasingly used across many sectors of society, including education, eldercare, search and rescue, and space robotics. In all these domains, it is crucial that robots be able to accept commands through natural language, so as to enable natural, effective, and understandable interaction. When commanded through natural language, robots must be able to ensure that the way that they achieve users' commands aligns with human expectations, especially the social and moral rules humans agree to by community consensus, known as social and moral norms. Moreover, if a robot is commanded in a way that cannot be fully achieved while complying with these social and moral norms, that robot must be able to explain to the user why it must reject the given command, offering acceptable alternatives when available. While there has been some previous work on ethical planning and command rejection, it has largely not accounted for cases in which robots are uncertain about social or moral norms or cases in which social and moral norms change between contexts. Research is needed to give robots the perceptual capabilities they need to identify such contexts, as well as the rich language understanding and generation abilities needed to communicate about social and moral norms.This research will develop an Intelligent Physical System capable of (1) performing ethical reasoning using a dynamic set of norms that changes along with the robot's context, (2) using these reasoning capabilities to effectively reject or offer alternatives to inappropriate commands, and (3) learning rich representations of the contexts relevant to its set of moral and social norms. These capabilities are crucial as robots move into the real world, in which they (1) may be given unethical commands, either due to malfeasance or ignorance, (2) may be required to operate in not one context, but a variety of contexts, each which may have their own relevant social and moral norms, and (3) may need to learn about new contexts from both human instruction and their own perception. In order to develop this IPS in consideration of these real-world challenges, this research will produce the first algorithms for identifying and rejecting inappropriate commands in uncertain, dynamic, and realistically perceived contexts, using techniques form (1) natural language understanding and generation in uncertain and open worlds and Dempster-Shafer Theory; (2) task and motion planning through constrained inference and constrained optimization; and (3) representation learning for long-term autonomy and simultaneous localization and mapping.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器人越来越多地用于社会的许多领域,包括教育,老年人护理,搜索和救援以及空间机器人。在所有这些领域中,机器人能够通过自然语言接受命令至关重要,以便实现自然,有效和可理解的交互。当通过自然语言命令时,机器人必须能够确保它们实现用户命令的方式符合人类的期望,特别是人类通过社区共识同意的社会和道德规则,即社会和道德规范。此外,如果机器人被命令的方式在遵守这些社会和道德规范的情况下无法完全实现,那么机器人必须能够向用户解释为什么它必须拒绝给定的命令,并在可用时提供可接受的替代方案。虽然之前已经有一些关于道德规划和命令拒绝的工作,但它在很大程度上没有考虑到机器人对社会或道德规范不确定的情况,或者社会和道德规范在不同环境之间变化的情况。需要研究赋予机器人识别这种环境所需的感知能力,以及丰富的语言理解和生成能力,以交流社会和道德规范。本研究将开发一种智能物理系统,该系统能够(1)使用动态规范集进行伦理推理,该规范集随机器人的环境沿着变化,(2)使用这些推理能力来有效地拒绝或提供替代不适当的命令,(3)学习与其道德和社会规范相关的背景的丰富表征。当机器人进入真实的世界时,这些能力是至关重要的,在这个世界中,它们(1)可能会因为渎职或无知而被给予不道德的命令,(2)可能需要在不止一个环境中操作,而是在各种环境中操作,每个环境都可能有自己相关的社会和道德规范,(3)可能需要从人类的指令和自己的感知中学习新的环境。为了在考虑这些现实世界的挑战的情况下开发这种IPS,本研究将产生用于识别和拒绝不确定的、动态的和现实感知的上下文中的不适当的命令的第一算法,使用以下技术:(1)在不确定的和开放的世界中的自然语言理解和生成以及Dempster-Shafer理论;(2)通过约束推理和约束优化的任务和运动规划;和(3)长期自主和同步本地化和映射的表征学习。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Voxel-Based Representation Learning for Place Recognition Based on 3D Point Clouds
Failure Explanation in Privacy-Sensitive Contexts: An Integrated Systems Approach
隐私敏感环境中的失败解释:集成系统方法
Task and Motion Planning
任务和运动规划
  • DOI:
    10.1007/978-3-642-41610-1_176-1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dantam, Neil T
  • 通讯作者:
    Dantam, Neil T
Long-term Place Recognition through Worst-case Graph Matching to Integrate Landmark Appearances and Spatial Relationships
Why and How Robots Should Say ‘No’
  • DOI:
    10.1007/s12369-021-00780-y
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Gordon Briggs;T. Williams;R. Jackson;Matthias Scheutz
  • 通讯作者:
    Gordon Briggs;T. Williams;R. Jackson;Matthias Scheutz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Williams其他文献

UVAE: Integration of Heterogeneous Unpaired Data with Imbalanced Classes
UVAE:异构不成对数据与不平衡类的集成
  • DOI:
    10.1101/2023.12.18.572157
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mike Phuycharoen;Verena Kaestele;Thomas Williams;Lijing Lin;Tracy Hussell;John Grainger;Magnus Rattray
  • 通讯作者:
    Magnus Rattray
BronchStart Study Extended Data
BronchStart 研究扩展数据
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Williams
  • 通讯作者:
    Thomas Williams
Investigating the relationship between thalamic iron concentration and disease severity in secondary progressive multiple sclerosis using quantitative susceptibility mapping: Cross-sectional analysis from the MS-STAT2 randomised controlled trial
  • DOI:
    10.1016/j.ynirp.2024.100216
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Williams;Nevin John;Alberto Calvi;Alessia Bianchi;Floriana De Angelis;Anisha Doshi;Sarah Wright;Madiha Shatila;Marios C. Yiannakas;Fatima Chowdhury;Jon Stutters;Antonio Ricciardi;Ferran Prados;David MacManus;Francesco Grussu;Anita Karsa;Becky Samson;Marco Battiston;Claudia A.M. Gandini Wheeler-Kingshott;Karin Shmueli
  • 通讯作者:
    Karin Shmueli
Évaluation de la longueur du tendon du semi-tendineux en fonction de paramètres cliniques. Analyse et application clinique
  • DOI:
    10.1016/j.rcot.2013.09.148
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Williams;Aude Griffart;Philippe Colombet
  • 通讯作者:
    Philippe Colombet
Clinical trials for progressive multiple sclerosis: progress, new lessons learned, and remaining challenges
进行性多发性硬化症的临床试验:进展、新经验教训和现存挑战
  • DOI:
    10.1016/s1474-4422(24)00027-9
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    45.500
  • 作者:
    Jeremy Chataway;Thomas Williams;Vivien Li;Ruth Ann Marrie;Daniel Ontaneda;Robert J Fox
  • 通讯作者:
    Robert J Fox

Thomas Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Williams', 18)}}的其他基金

Tracing the origin and diversification of a morphological trait through transcriptional regulators and their target genes
通过转录调节因子及其靶基因追踪形态性状的起源和多样化
  • 批准号:
    2211833
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
    Continuing Grant
CAREER: Cognitively-Informed Memory Models for Language-Capable Robots
职业:具有语言能力的机器人的认知信息记忆模型
  • 批准号:
    2044865
  • 财政年份:
    2021
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Role-Based Norm Violation Response in Human-Robot Teams
CHS:小型:协作研究:人机团队中基于角色的规范违规响应
  • 批准号:
    1909847
  • 财政年份:
    2019
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
MICA: Hydroxyurea - Pragmatic Reduction In Mortality and Economic burden (H-PRIME)
MICA:羟基脲 - 务实降低死亡率和经济负担 (H-PRIME)
  • 批准号:
    MR/S004904/1
  • 财政年份:
    2019
  • 资助金额:
    $ 57万
  • 项目类别:
    Research Grant
CHS: Small: Collaborative Research: APERTURE: Augmented Reality based Perception-Sensitive Robotic Gesture
CHS:小型:协作研究:APERTURE:基于增强现实的感知敏感机器人手势
  • 批准号:
    1909864
  • 财政年份:
    2019
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
CRI: II-New: Infrastructure for Robust Interactive Underground Robots
CRI:II-新:强大的交互式地下机器人基础设施
  • 批准号:
    1823245
  • 财政年份:
    2018
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the gene regulatory network alterations responsible for the repeated evolution of a Hox-regulated trait
合作研究:解决导致 Hox 调控性状重复进化的基因调控网络改变
  • 批准号:
    1555906
  • 财政年份:
    2016
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: The structure, function, and evolution of a regulatory network controlling sexually dimorphic fruit fly development
合作研究:控制性二态性果蝇发育的调控网络的结构、功能和进化
  • 批准号:
    1146373
  • 财政年份:
    2012
  • 资助金额:
    $ 57万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
  • 批准号:
    MR/Y004000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57万
  • 项目类别:
    Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024646
  • 财政年份:
    2021
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024792
  • 财政年份:
    2021
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024670
  • 财政年份:
    2021
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
  • 批准号:
    2024409
  • 财政年份:
    2020
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
  • 批准号:
    2024435
  • 财政年份:
    2020
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
  • 批准号:
    2024615
  • 财政年份:
    2020
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了