CAREER: Controlling Responsive Biointerfaces by Understanding Elastin Self-Assembled Monolayers

职业:通过了解弹性蛋白自组装单层来控制响应生物界面

基本信息

  • 批准号:
    2045033
  • 负责人:
  • 金额:
    $ 52.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL SUMMARYThe development of next-generation health monitoring and treatment devices requires an ability to design biomaterial interfaces with predictable properties, and an effective workforce to make discoveries and propel technological advances. This project will address these needs by 1) developing a fundamental understanding of peptide-based self-assembled monolayers and designing these interfaces to have desired biomaterial properties; and 2) helping to create a diverse workforce with expertise in biomaterials. The fundamental knowledge in peptide self-assembled monolayers gained in this project can help speed the development of implantable technologies for monitoring and treating non-communicable diseases, which currently cause more than 60% of annual worldwide deaths and trillions of dollars in economic losses. Specifically, this project will impact the fields of drug delivery, sensors, and capture-release applications. In addition, an innovative education program is being developed which uses peptides as a platform to increase high school, undergraduate, and graduate students’ self-efficacy in areas related to engineering and design, and positively impact attitudes toward social responsibility at the university level. Self-efficacy is a metric positively related to academic achievement, persistence, and engagement in academic work. Graduate and undergraduate students will learn industry-relevant project planning skills through a hands-on peptide engineering project and then, in a unique service learning experience, lead high school students in related projects. This effort is in partnership with a local high school where over 90% of the students are from underrepresented minority groups. PART 2: TECHNICAL SUMMARYThe main objectives of this project are to 1) develop models that predict the properties of peptide self-assembled monolayers; and 2) increase self-efficacy in performing engineering tasks across a diverse group of high-school, undergraduate and graduate students. The research program will focus on fundamental understanding of peptide self-assembled monolayer transition temperature, which controls stimuli-responsive behavior; effective surface coverage, which controls access to the substrate; and self-assembled monolayer kinetic assembly, which controls these biomaterial properties. Elastin-derived sequences will be studied because elastin is known to have stimuli-responsive properties and has been proposed for a broad range of biomaterials applications. Currently, there are no established models to predict elastin self-assembled monolayer responsive behavior, effective surface coverage, or kinetic assembly. This project will fill these gaps in scientific understanding by using a combination of peptide design and techniques such as quartz crystal microbalance with dissipation monitoring, cyclic voltammetry, and time-resolved attenuated total reflection surface-enhanced infrared absorption spectroscopy. The research program will be coupled with new interactive service learning initiatives that will engage students at the high school, undergraduate, and graduate levels. A unique undergraduate-/graduate-level project planning learning module will be innovated to encourage students to use their peptide engineering knowledge to create pedagogical content for an outreach program with East Cleveland female high school students to teach valuable research and engineering skills. Student self-efficacy will be measured at all levels using validated survey instruments to assess the success of the education programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术概述下一代健康监测和治疗设备的开发需要设计具有可预测特性的生物材料界面的能力,以及有效的工作人员来发现和推动技术进步。该项目将通过以下方式满足这些需求:1)对基于肽的自组装单层膜有一个基本的了解,并设计这些界面以具有所需的生物材料特性;2)帮助创建具有生物材料专业知识的多元化劳动力。在这个项目中获得的关于肽自组装单层的基本知识可以帮助加快监测和治疗非传染性疾病的植入式技术的发展,非传染性疾病目前造成全球每年60%以上的死亡和数万亿美元的经济损失。具体来说,该项目将影响药物输送、传感器和捕获释放应用领域。此外,一项创新的教育计划正在开发中,该计划以肽为平台,提高高中、本科生和研究生在工程和设计相关领域的自我效能感,并积极影响大学层面对社会责任的态度。自我效能感是一种与学业成就、坚持不懈和学术工作投入正相关的指标。研究生和本科生将通过实践肽工程项目学习行业相关的项目策划技能,然后,在独特的服务学习经验中,带领高中生参与相关项目。这项工作是与当地一所高中合作进行的,该高中90%以上的学生来自代表性不足的少数群体。本项目的主要目标是:1)开发预测肽自组装单层性质的模型;2)提高在高中、本科生和研究生等不同群体中执行工程任务的自我效能感。研究项目将集中于对控制刺激反应行为的肽自组装单层转变温度的基本理解;有效的表面覆盖,控制对基材的访问;以及自组装的单层动能组装,它控制着这些生物材料的特性。弹性蛋白衍生序列将被研究,因为弹性蛋白已知具有刺激响应特性,并已被提出用于广泛的生物材料应用。目前,还没有建立模型来预测弹性蛋白自组装单层的响应行为、有效表面覆盖或动力学组装。该项目将通过结合肽设计和石英晶体微平衡耗散监测、循环伏安法和时间分辨衰减全反射表面增强红外吸收光谱等技术来填补这些科学认识上的空白。该研究项目将与新的互动服务学习计划相结合,将吸引高中、本科和研究生层次的学生。一个独特的本科/研究生水平的项目规划学习模块将被创新,以鼓励学生利用他们的肽工程知识,为东克利夫兰女高中学生的推广项目创造教学内容,教授有价值的研究和工程技能。学生的自我效能感将在各个层面进行测量,使用有效的调查工具来评估教育计划的成功。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantification of the effects of hydrophobicity and mass loading on the effective coverage of surface-immobilized elastin-like peptides
量化疏水性和质量负载对表面固定弹性蛋白样肽有效覆盖的影响
  • DOI:
    10.1016/j.bej.2021.107933
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Su, Zihang;Kim, ChulOong;Renner, Julie N.
  • 通讯作者:
    Renner, Julie N.
Engineered Polypeptides as a Tool for Controlling Catalytic Active Janus Particles
  • DOI:
    10.1021/acsaenm.3c00263
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marola W. Issa;Diego Calderon;Olivia Kamlet;S. Asaei;J. Renner;C. Wirth
  • 通讯作者:
    Marola W. Issa;Diego Calderon;Olivia Kamlet;S. Asaei;J. Renner;C. Wirth
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julie Renner其他文献

Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes
  • DOI:
    10.1016/j.jpowsour.2014.08.013
  • 发表时间:
    2014-12-20
  • 期刊:
  • 影响因子:
  • 作者:
    Justin Roller;Julie Renner;Haoran Yu;Chris Capuano;Tony Kwak;Yang Wang;C. Barry Carter;Kathy Ayers;William E. Mustain;Radenka Maric
  • 通讯作者:
    Radenka Maric
Intubation orotrachéale : à partir de deux théâtres d’opérations extérieures, épidémiologie des intubations difficiles prévues et imprévues
  • DOI:
    10.1016/j.anrea.2017.07.007
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Audrey Jarrassier;Pierre Pasquier;Anne Chrisment;Julie Renner;Albin Vichard;Patrice Ramiara;Stéphane Mérat
  • 通讯作者:
    Stéphane Mérat

Julie Renner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julie Renner', 18)}}的其他基金

Tuning the Interactions between Biomolecules and Surfaces via a Peptide Self-Assembled Monolayer Framework
通过肽自组装单层框架调节生物分子和表面之间的相互作用
  • 批准号:
    2026259
  • 财政年份:
    2020
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Standard Grant

相似海外基金

Fundamental study for controlling the primary nucleation using solvation of temperature-responsive polymer
利用温度响应聚合物溶剂化控制初次成核的基础研究
  • 批准号:
    23K13587
  • 财政年份:
    2023
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of temperature-responsive nanocapsules controlling permeation of water-soluble compounds
控制水溶性化合物渗透的温度响应型纳米胶囊的设计
  • 批准号:
    21K05202
  • 财政年份:
    2021
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physiologic- and pathophysiologic-responsive brainstem neurons controlling appetite
控制食欲的生理和病理生理反应脑干神经元
  • 批准号:
    451707
  • 财政年份:
    2021
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Operating Grants
Synthesis of stimuli-responsive nanocomposite polymer particles for controlling the dispersion of nano-inclusions
用于控制纳米夹杂物分散的刺激响应性纳米复合聚合物颗粒的合成
  • 批准号:
    20K22526
  • 财政年份:
    2020
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of tumor tissue fixation method by controlling chemical reaction between stimuli-responsive materials and biological molecules
通过控制刺激响应材料与生物分子之间的化学反应开发肿瘤组织固定方法
  • 批准号:
    18K12090
  • 财政年份:
    2018
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controlling crystallization of responsive microgel particles via cyclic stimuli
通过循环刺激控制响应性微凝胶颗粒的结晶
  • 批准号:
    389865760
  • 财政年份:
    2018
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Research Grants
A controlling of extraction and stripping of metal anionic species using the anion-exchange ability of a CO2 responsive ionic liquid
利用 CO2 响应离子液体的阴离子交换能力控制金属阴离子物质的萃取和反萃
  • 批准号:
    17H07353
  • 财政年份:
    2017
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
EAGER: A Dynamical Systems Approach to Modeling and Controlling Responsive Demand in Electric Power Systems
EAGER:电力系统响应需求建模和控制的动态系统方法
  • 批准号:
    1546682
  • 财政年份:
    2015
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Standard Grant
Controlling cell death and proliferation with encodable visible light responsive proteins
用可编码的可见光响应蛋白控制细胞死亡和增殖
  • 批准号:
    BB/I021396/1
  • 财政年份:
    2012
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Research Grant
Understanding and Controlling Nanoscale Molecular Metal Oxides for Responsive Reaction Systems
了解和控制响应反应系统的纳米级分子金属氧化物
  • 批准号:
    EP/F023456/2
  • 财政年份:
    2010
  • 资助金额:
    $ 52.3万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了