CAREER: Sculpting light in biological tissue: an ultrasound-mediated traveling light source for spatiotemporally precise in vivo gene editing
职业:在生物组织中塑造光:超声波介导的行进光源,用于时空精确的体内基因编辑
基本信息
- 批准号:2045120
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A fundamental challenge in biophotonics is the poor penetration of light deep inside the body due to scattering and absorption, thereby necessitating invasive procedures, such as optical fiber implantation and surgical tissue removal, to deliver light for deep-tissue imaging and light-activated therapies. To address this fundamental challenge, this CAREER project seeks to produce light on-demand at any depth or location inside the body via noninvasive ultrasound, thus realizing “light sculpting” in the body with user-defined patterns. The investigator’s group will use this method for spatially and temporally precise gene editing in deep tissue. The scientific outcomes of this CAREER project will enable the broadening participation of the Investigator and his group in a multitude of education activities. These education activities include K-12 outreach and teacher training, long-term mentorship to pre-college underrepresented minority (URM) students, and hands-on lab internship to students from underserved high schools and historically Black colleges and universities (HBCUs). The overarching career goal of the investigator is to bridge the gap in knowledge and eliminate the barrier between the physical and life sciences. Towards this goal, this CAREER project aims to develop a circulation deliverable and rechargeable light source under an engineered ultrasound field, thereby leading to on demand “light sculpting” in three-dimensional biological tissue and thus address the fundamental challenge of biophotonics of delivering light to a depth of more than 100 microns. The project’s main hypothesis is that traveling mechanoluminescent nanoparticles (MLNPs) in blood circulation can act as an energy relay that transports demand generation of localized light emission by circulating MLNPs (cyan circles) and tissue-penetrant FUS (focused ultrasound) for gene editing. The research plan is organized under three objectives: the FIRST objective is to develop a palette of rare-earth doped melilite phosphor MLNPs with tunable emission wavelengths in response to different ultrasound frequencies. With mechanistic understanding of the relationship between ultrasound pressure, emission wavelength and trap depth of MLNPs, the SECOND objective is to obtain user-defined spatiotemporal pattern of light emission in any biological tissue based on the simulated ultrasound pressure field, local hemodynamics, and the photophysical properties of blood-circulating MLNPs. The THIRD objective is to perform in vivo "light sculpting" with ultrasound for spatiotemporally precise gene editing in live mice, using photo switchable Cas9 and a bioluminescent reporter to assess success. If successful, this technology can be widely extended to any application requiring a light source deep in the body, including in vivo fluorescence microscopy, deep-brain optogenetics, and photodynamic therapies to treat cancer and viral infections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物光子学的一个基本挑战是,由于散射和吸收,光在体内深处的穿透性较差,因此需要侵入性手术,例如光纤植入和手术组织切除,以传输用于深层组织成像和光激活治疗的光。为了应对这一根本挑战,这个CAREER项目寻求通过无创超声波在体内任何深度或位置按需产生光,从而以用户定义的模式实现体内的“光雕刻”。研究人员的小组将使用这种方法在深层组织中进行空间和时间上精确的基因编辑。该职业项目的科学成果将使研究者及其团队能够更广泛地参与多种教育活动。这些教育活动包括 K-12 外展和教师培训、对大学前代表性不足的少数族裔 (URM) 学生的长期指导,以及为来自服务不足的高中和传统黑人学院和大学 (HBCU) 的学生提供实验室实践实习。研究者的首要职业目标是弥合知识差距并消除物理科学和生命科学之间的障碍。为了实现这一目标,该CAREER项目旨在开发一种工程超声场下的循环可传输和可充电光源,从而实现三维生物组织中的按需“光雕刻”,从而解决生物光子学将光传输到100微米以上深度的根本挑战。 该项目的主要假设是,血液循环中移动的机械发光纳米颗粒(MLNP)可以充当能量中继,通过循环 MLNP(青色圆圈)和组织渗透性 FUS(聚焦超声)来传输局部光发射的需求,以进行基因编辑。 该研究计划分为三个目标:第一个目标是开发一系列稀土掺杂黄长石磷光体 MLNP,其发射波长可调,可响应不同的超声波频率。通过对超声压力、发射波长和 MLNP 陷阱深度之间关系的机械理解,第二个目标是基于模拟超声压力场、局部血流动力学和血液循环 MLNP 的光物理特性,获得任何生物组织中用户定义的光发射时空模式。第三个目标是利用超声波进行体内“光雕刻”,以在活体小鼠中进行时空精确的基因编辑,并使用可光切换的 Cas9 和生物发光报告基因来评估成功情况。 如果成功,这项技术可以广泛扩展到任何需要体内深处光源的应用,包括体内荧光显微镜、深部脑光遗传学以及治疗癌症和病毒感染的光动力疗法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A palette of rechargeable mechanoluminescent fluids produced by a biomineral-inspired suppressed dissolution approach
由生物矿物启发的抑制溶解方法产生的可充电机械发光液体调色板
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:15
- 作者:Fan Yang, Xiang Wu
- 通讯作者:Fan Yang, Xiang Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guosong Hong其他文献
Achieving transient and reversible optical transparency in live mice with tartrazine
用柠檬黄在活小鼠中实现瞬态和可逆的光学透明
- DOI:
10.1038/s41596-025-01187-z - 发表时间:
2025-05-13 - 期刊:
- 影响因子:16.000
- 作者:
Carl H. C. Keck;Elizabeth Lea Schmidt;Su Zhao;Zhongyu Liu;Ling-Yi Zhang;Miao Cui;Xiaoyu Chen;Chonghe Wang;Han Cui;Mark L. Brongersma;Guosong Hong - 通讯作者:
Guosong Hong
Systemically Delivered, Deep-tissue Nanoscopic Light Sources
系统传输的深层组织纳米光源
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xiang Wu;Fan Yang;Sa Cai;Guosong Hong - 通讯作者:
Guosong Hong
Encapsulation of mechanoluminescent nanotransducers into erythrocyte-derived particles
将机械发光纳米传感器封装到红细胞衍生颗粒中
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Grant Swajian;Marigold G. Malinao;Shan Jiang;Chi;Guosong Hong;Bahman Anvari - 通讯作者:
Bahman Anvari
All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping.
用于深脑调制和映射的全组织多功能光电网格。
- DOI:
10.1021/acs.nanolett.1c00425 - 发表时间:
2021 - 期刊:
- 影响因子:10.8
- 作者:
Jung Min Lee;Dingchang Lin;Ha;Young;Guosong Hong;Charles M. Lieber;Hong - 通讯作者:
Hong
Activation of mechanoluminescent nanotransducers by focused ultrasound enables light delivery to deep-seated tissue in vivo
通过聚焦超声激活机械发光纳米传感器,使光能够输送到体内深层组织
- DOI:
10.1038/s41596-023-00895-8 - 发表时间:
2023 - 期刊:
- 影响因子:14.8
- 作者:
Shan Jiang;Xiang Wu;Fan Yang;N. Rommelfanger;Guosong Hong - 通讯作者:
Guosong Hong
Guosong Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guosong Hong', 18)}}的其他基金
EAGER: Neuromodulation in the second near-infrared window
EAGER:第二个近红外窗口的神经调节
- 批准号:
2217582 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Effects of air pollution/maternal stress on microglial sculpting of social circuits
空气污染/母亲压力对社会回路小胶质细胞塑造的影响
- 批准号:
10748065 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Decoding the mechanical interactions between tissue layers sculpting organ shape
解码塑造器官形状的组织层之间的机械相互作用
- 批准号:
10572921 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
- 批准号:
2234135 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Sculpting Energy Landscapes in Materials: Theory, Experiment and Application
用材料塑造能量景观:理论、实验与应用
- 批准号:
RGPIN-2018-06858 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
- 批准号:
2234134 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Molecular Logic Sculpting Cell-Specific Contributions of Neurexin-1 at the Tripartite Synapse
分子逻辑塑造 Neurexin-1 对三联突触的细胞特异性贡献
- 批准号:
10224581 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Contra-Thermodynamic Catalysis and Fluorine Sculpting; Two Counter Cultural Approaches to Synthesis
反热力学催化和氟雕刻;
- 批准号:
10388548 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Molecular Logic Sculpting Cell-Specific Contributions of Neurexin-1 at the Tripartite Synapse
分子逻辑塑造 Neurexin-1 对三联突触的细胞特异性贡献
- 批准号:
10594568 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Molecular Logic Sculpting Cell-Specific Contributions of Neurexin-1 at the Tripartite Synapse
分子逻辑塑造 Neurexin-1 对三联突触的细胞特异性贡献
- 批准号:
10378089 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:














{{item.name}}会员




