CAREER: Human motion driven capillaric circuits for skin-mountable biosensors
职业:用于皮肤安装生物传感器的人体运动驱动毛细管电路
基本信息
- 批准号:2045087
- 负责人:
- 金额:$ 51.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Musculoskeletal disorders, the leading cause of disability in the world, have been on the rise due to the aging human population and the main course of action in response to these conditions is improving the availability and efficacy of physical rehabilitation. Continuous monitoring of specific human movements using wearable devices would enable tracking of therapy progress, thus increase patient compliance and education in addition to enabling clinical studies investigating the relationship between rehabilitation exercises and health outcomes. The goal of this CAREER project is to develop a skin patch incorporated with a capillaric circuit that functions as a micropump driven by human movement, which is an attractive approach for this purpose as it allows unique functionalities by combining fluid physics with wearables and human biomechanics. To inspire a broad range of students to study in STEM fields, the bioinspired device design and simple fabrication methods available in the PI’s lab will be used to produce educational kits for teaching human physiology and device physics to high school and college students, and teachers will be trained through a collaboration with the Santa Clara County Biotechnology Education Partnership program.The investigator’s primary research goals are directed toward the development and application of implantable and miniaturized micro/optorfluidic technologies for biology and medicine. Toward this goal, this CAREER project aims to develop a bioinspired capillaric sensor patch for detecting skin strain-field (SSF) configurations correlated with a specific motion (e.g., facial or shoulder rehabilitation exercises etc.) Though skin-mounted microfluidic wearable devices for sweat and strain sensing have attracted significant attention, human movement has not been considered as the source of functionality in a microfluidic wearable device. In this project, human skin biomechanics as a driving force for microfluidics will be investigated using digital image correlation (DIC) and the skin strain field (SSF) to measure a large range of movements. Capillaric sensor networks with electrical and image-based readouts will be designed for real-time wireless data transfer and fluidic data storage, respectively. Ultimately, the interaction of the complex mechanical stimuli and the capillaric network components will be represented as a signal with elastomeric and dilatometric modes, which will significantly reduce the energy consumption and computational power required for complex movement analysis. For the time-dependent and multiplexed nature of the SSF, a computational method is needed for designing capillaric circuits for performing the desired analog and digital signal processing operations in the fluidic domain. A microfluidic computer-aided design tool that models the capillaric circuit as an electrical circuit will be developed to find the device parameters. In addition to the device physics, this project will investigate the development of new manufacturing techniques for large-area skin-conformal microfluidic devices and stable electrode-ionic liquid interfaces. These will serve towards the advancement of capillaric sensors for wearable technologies. An imperceptible skin-mountable patch that wirelessly transmits the number of repetitions of the physical rehabilitation exercises with the correct form and intensity to a master node (e.g., smart-watch or -phone) will be developed and these devices will be validated on volunteers in consultation with the Stanford Rehabilitation Center.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
肌肉骨骼疾病是世界上残疾的主要原因,由于人口老龄化,肌肉骨骼疾病一直在增加,应对这些情况的主要行动方针是提高身体康复的可用性和有效性。使用可穿戴设备连续监测特定的人体运动将能够跟踪治疗进展,从而增加患者的依从性和教育,此外还能够进行临床研究,调查康复锻炼和健康结果之间的关系。 这个CAREER项目的目标是开发一种皮肤贴片,该贴片与毛细电路结合,用作由人体运动驱动的微型泵,这是一种有吸引力的方法,因为它通过将流体物理学与可穿戴设备和人体生物力学相结合来实现独特的功能。 为了激励广大学生在STEM领域学习,PI实验室提供的生物启发设备设计和简单的制造方法将用于生产教育工具包,用于向高中和大学生教授人体生理学和设备物理学,和教师将通过与圣克拉拉县生物技术教育伙伴关系计划的合作进行培训。调查员的主要研究目标是致力于可植入和微型化微/光流控技术在生物和医学领域的发展和应用。为了实现这一目标,这个CAREER项目旨在开发一种生物启发的毛细血管传感器贴片,用于检测与特定运动相关的皮肤应变场(SSF)配置(例如,面部或肩部康复训练等) 虽然用于汗液和应变感测的皮肤安装的微流体可穿戴设备已经引起了极大的关注,但人体运动尚未被认为是微流体可穿戴设备中的功能来源。在这个项目中,人类皮肤生物力学作为微流体的驱动力将使用数字图像相关(DIC)和皮肤应变场(SSF)来测量大范围的运动。毛细管传感器网络与电气和图像为基础的读出将被设计为实时无线数据传输和流体数据存储,分别。最终,复杂的机械刺激和毛细网络组件的相互作用将被表示为具有弹性体和弹性模式的信号,这将显著降低复杂运动分析所需的能量消耗和计算能力。对于SSF的时间依赖性和多路复用性质,需要一种计算方法来设计用于在流体域中执行期望的模拟和数字信号处理操作的毛细管电路。一个微流控计算机辅助设计工具,模型的毛细管电路作为一个电路将被开发,以找到设备参数。除了器件物理学之外,该项目还将研究大面积皮肤适形微流体器件和稳定电极-离子液体界面的新制造技术的发展。这些将有助于可穿戴技术毛细管传感器的发展。一种不可感知的可安装在皮肤上的贴片,其将具有正确形式和强度的身体康复锻炼的重复次数无线地发送到主节点(例如,智能手表或智能手机),这些设备将在与斯坦福大学康复中心协商后在志愿者身上进行验证。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integration of capillaric strain sensors toward recognition of human movements
集成毛细管应变传感器以识别人体运动
- DOI:10.1039/d2sd00201a
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gasvoda, Hudson;Cmager, Nick;Altay, Rana;Lee, Ju Young;Araci, I. Emre
- 通讯作者:Araci, I. Emre
Micromechanical valve-operated needle-on-a-chip microinjection module for microfluidic large-scale integration
用于微流控大规模集成的微机械阀控针片微注射模块
- DOI:10.1088/1361-6439/ac984a
- 发表时间:2022
- 期刊:
- 影响因子:2.3
- 作者:Gray-Scherr, Delaney;Gasvoda, Hudson;Hadsell, Alex;Miller, Leilani;Demir, Ebru;Araci, I Emre
- 通讯作者:Araci, I Emre
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ismail Araci其他文献
Ismail Araci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion
职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架
- 批准号:
2340261 - 财政年份:2024
- 资助金额:
$ 51.84万 - 项目类别:
Standard Grant
Physically and biomechanically plausible human motion capture from video
从视频中捕捉物理和生物力学上合理的人体动作
- 批准号:
23KJ1915 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Research development of a human-centered intelligent robot system based on the fusion of advanced artificial intelligent technologies of tactile-visual sensing and control strategy
基于触觉视觉传感与控制策略的先进人工智能技术融合的以人为中心的智能机器人系统的研究开发
- 批准号:
23K03790 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Development of a combined Gamma/Positron system for molecular imaging of the human brain at sub-500 micron spatial resolution
开发伽玛/正电子组合系统,用于以亚 500 微米空间分辨率对人脑进行分子成像
- 批准号:
10722205 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
The neural computations underlying human social interaction recognition
人类社交互动识别的神经计算
- 批准号:
10637982 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Investigation of human tactile perception characteristics during self-motion
人类自我运动过程中触觉感知特性的研究
- 批准号:
23K16761 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
AddBiomechanics: Automatic Processing and Sharing of Human Movement Data
AddBiomechanics:人体运动数据的自动处理和共享
- 批准号:
10743411 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Non-invasive Magnetic Resonance Imaging of Glycogen in the Human Liver
人类肝脏中糖原的无创磁共振成像
- 批准号:
10727928 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Cortical basal ganglia network dynamics during human gait control
人类步态控制过程中的皮质基底神经节网络动力学
- 批准号:
10567272 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别: