Engineering Human Organizer To Study Left-Right Symmetry Breaking

工程人类组织者研究左右对称性破缺

基本信息

  • 批准号:
    10667938
  • 负责人:
  • 金额:
    $ 23.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-04 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The human body appears left-right (LR) symmetric, but the shape and positioning of internal organs are distinct at two sides. Defects in laterality such as isomerism (loss of asymmetry), and heterotaxia (a loss of concordance among the individual organs) are observed in more than 1 in 8000 live births, contribute to pre-term births and miscarriage, and have significant clinical implications. Our lab has pioneered in the research of the cellular LR asymmetry using novel in vitro microscale devices and has extensive experience in modeling organ asymmetries such as cardiac c-looping. We would like to extend our research into studying the overall LR asymmetric body plan, which is determined by a select group of cells in embryonic development, first identified in Xenopus as the Spemann-Mangold organizing center. Since then, many studies have explored the functionality of a left-right organizer (LRO) in various vertebrates, in particular, chick, fish, and mouse. Due to ethical concerns and the 14- day restriction of culturing human embryos in vitro, the ability of researchers to study the formation of a human organizer is very limited. Therefore, finding a biomimetic surrogate of the human organizer will be of great interest to basic science and health care. Recent rapid scientific advances in basic stem cell biology and organoid engineering have made it possible to engineer a human organizer for studying LR symmetry breaking. Scientists have demonstrated that human embryonic stem cells (hESCs) can be induced to express known organizer markers, including the Goosecoid (GSC), with either the culture of embryoid bodies or the patterning of hESCs on 2D micropatterned circles. GSC is a key organizer marker of LRO known to be conserved across several vertebrate species. The major challenge now is how we can engineer the cells into highly organized and naturally curved cell sheets with planar polarization and even with specific localization, structure, and motion of cilia so that the organizer can fulfill its critical function in symmetry breaking. As a team of well-trained bioengineers and development biologists with experience and expertise in stem cell biology and LR asymmetry, we are well-equipped to address this problem. We propose to develop a novel in vitro human organizer model that will utilize organizer differentiation protocols, a geometrically-control 3D hydrogel culture system, and a stable gradient generator for developmental morphogens to facilitate the differentiation and structural formation of a human organizer. We will further study the role of the cellular intrinsic bias, termed cell chirality, in planar cellular polarity (PCP) signaling and its regulation of the human LRO morphogenesis. Overall, the proposed study is timely in addressing a very fundamental yet fascinating question regarding the developmental LR asymmetry. We will not only establish an in vitro 3D platform for studying the human LRO, but also reveal biophysical mechanisms of PCP and chirality in realizing the critical function of LRO. It will pave the way towards the further development of screening platforms for teratogens and prenatal drugs.
人体看起来左右对称,但内部器官的形状和位置是不同的 在两边。偏侧缺陷,如异构性(不对称性丧失)和异质性(协调性丧失 在各个器官中)在8000名活产婴儿中被观察到超过1/8000,有助于早产和 流产,并具有重要的临床意义。我们实验室在细胞LR的研究方面开创了先河 不对称使用新的体外微尺度装置,并在器官不对称建模方面拥有丰富的经验 例如心脏C-环。我们想把我们的研究扩展到研究整体的LR不对称体 计划,由胚胎发育中的一组选定的细胞决定,最初在非洲爪哇被鉴定为 斯佩曼-曼戈尔德组织中心。从那时起,许多研究探索了左右脑的功能 组织者(LRO)在各种脊椎动物中,特别是雏鸟、鱼和老鼠。出于道德方面的考虑和14- 人类胚胎体外培养的天数限制,研究人员研究人类形成的能力 组织者非常有限。因此,寻找人类组织者的仿生替代品将是非常有意义的 到基础科学和医疗保健。 最近在基础干细胞生物学和有机体工程方面的快速科学进步使我们有可能 设计一个人类组织者来研究LR对称性破缺。科学家已经证明,人类 胚胎干细胞(HESCs)可以被诱导表达已知的组织者标记,包括类鹅 (GSC),通过培养类胚体或在2D微图案化的圆上形成hESCs的图案。GSC 是LRO的关键组织者标记,已知在几个脊椎动物物种中保守。面临的主要挑战 现在是我们如何将细胞设计成高度有序和自然弯曲的平面细胞片的方法 极化,甚至与纤毛的特定位置,结构和运动,以便组织者可以履行其 对称破缺中的临界函数。作为一支训练有素的生物工程师和发育生物学家团队 凭借在干细胞生物学和LR不对称性方面的经验和专业知识,我们完全有能力解决这个问题。 我们建议开发一种新的体外人类组织者模型,该模型将利用组织者分化协议, 几何控制的3D水凝胶培养系统和稳定的发育梯度发生器 促进人类组织者的分化和结构形成的形态生成物。我们将进一步研究 细胞固有偏向,称为细胞手性,在平面细胞极性(PCP)信号中的作用及其 人类LRO形态发生的调控。 总体而言,拟议的研究及时解决了一个非常基本但令人着迷的问题,即 发育中的LR不对称。我们不仅将建立一个研究人类LRO的体外三维平台, 也揭示了PCP的生物物理机制和手性在实现LRO关键功能中的作用。它将会铺平 进一步开发致畸物质和产前药物筛查平台的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leo Q. Wan其他文献

Engineered platforms for mimicking cardiac development and drug screening
  • DOI:
    10.1007/s00018-024-05231-1
  • 发表时间:
    2024-04-25
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Madison Stiefbold;Haokang Zhang;Leo Q. Wan
  • 通讯作者:
    Leo Q. Wan

Leo Q. Wan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leo Q. Wan', 18)}}的其他基金

Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
  • 批准号:
    10587627
  • 财政年份:
    2023
  • 资助金额:
    $ 23.17万
  • 项目类别:
Administrative support to R01 HL148104: Understanding Cardiac C-Looping Using Microscale In Vitro Models
R01 HL148104 的行政支持:使用微型体外模型了解心脏 C 环
  • 批准号:
    10630645
  • 财政年份:
    2022
  • 资助金额:
    $ 23.17万
  • 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
  • 批准号:
    10210537
  • 财政年份:
    2021
  • 资助金额:
    $ 23.17万
  • 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
  • 批准号:
    10650246
  • 财政年份:
    2021
  • 资助金额:
    $ 23.17万
  • 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
  • 批准号:
    10838024
  • 财政年份:
    2021
  • 资助金额:
    $ 23.17万
  • 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
  • 批准号:
    10448260
  • 财政年份:
    2021
  • 资助金额:
    $ 23.17万
  • 项目类别:
Cell Chirality Based In Vitro Models For Embryonic Development and Abnormalities
基于细胞手性的胚胎发育和异常体外模型
  • 批准号:
    8757997
  • 财政年份:
    2014
  • 资助金额:
    $ 23.17万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了