CAREER: Rapid Manufacture of Three-Dimensional Nanostructures for Nano-enabled Devices Using Projection Two-Photon Lithography
职业:使用投影双光子光刻技术快速制造纳米设备的三维纳米结构
基本信息
- 批准号:2045147
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant focuses on fundamentally transforming the three-dimensional printing of complex nanostructures using two-photon lithography from a slow and poorly scalable guesswork-based approach to a rapid and resource-efficient knowledge-based approach. The two-photon lithography process, which uses lasers to direct print three-dimensional structures in photopolymers, fills an important technology gap between microfabrication that is limited to planar geometries and typical additive manufacturing that cannot print structures with nanoscale features and precision. The two-photon lithography process is therefore critical for the fabrication of three-dimensional nano-enabled devices with applications in emerging fields such as quantum information processing, electric transportation and biomedicine, which are important to national prosperity and welfare. However, it has remained a niche process due to the low printing rates and limited process knowledge. Industrial-scale adoption is particularly challenging due to the slow and labor-intensive iterative ad-hoc experimentation involved in predicting the process inputs for a desired print geometry. This project elucidates the fundamental relationships between process parameters and product performance for a projection-based high-speed implementation of two-photon lithography. The research is complemented by an educational and outreach program centered around project-based experiential learning for training of manufacturing workforce, K-12 students and teachers, and undergraduate and graduate students, with a focus on reducing the barriers to diversity, equity and skills acquisition in advanced manufacturing. The specific goal of the research is to generate the processing science for high-throughput three-dimensional printing of nanostructures using projection two-photon lithography. This project advances three core research areas: (1) the coupling between light-matter interactions at high intensities (approaching terawatts per square cm), (2) polymerization at short time and small length scales (i.e., on millisecond and submicron scales), and (3) effect of polymerization on the physical properties of the printed nanoscale features. The specific research objectives are: (i) generation of physics-based relationships to predict printability and print geometry, (ii) elucidating the mechanisms that determine the rate limits, and (iii) developing error compensation techniques to minimize defects during printing of large structures with nano-scale precision. The research seeks to answer three fundamental questions about the process. (1) Can broadly generalizable predictive relationships be generated? (2) What are the theoretical and practical printing rate limits? (3) Is error compensation feasible? These are answered through a combination of physics-based computational modeling of the underlying physical phenomena, validation of models against previously unmeasurable empirical data, and in-situ process monitoring and control. This project advances additive nanomanufacturing of nano-enabled devices using scalable processing techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项学院早期职业发展(Career)补助金专注于从根本上将使用双光子光刻技术的复杂纳米结构的三维打印从基于猜测的缓慢且可伸缩性差的方法转变为快速且资源高效的基于知识的方法。双光子光刻工艺使用激光直接打印光致聚合物中的三维结构,填补了仅限于平面几何形状的微制造与无法打印具有纳米级特征和精度的结构的典型添加制造之间的重要技术空白。因此,双光子光刻工艺对于制造三维纳米使能器件至关重要,这些器件应用于新兴领域,如量子信息处理、电子运输和生物医学,这些领域对国家繁荣和福祉至关重要。然而,由于印刷速度低和工艺知识有限,它仍然是一个利基工艺。工业规模的采用尤其具有挑战性,因为在预测所需印刷几何形状的工艺输入时需要进行缓慢且劳动密集型的迭代特别试验。该项目阐明了基于投影的高速双光子光刻的工艺参数和产品性能之间的基本关系。这项研究得到了一个教育和推广计划的补充,该计划以基于项目的体验式学习为中心,培训制造业劳动力、K-12学生和教师、本科生和研究生,重点是减少先进制造业中多样性、公平性和技能获取的障碍。这项研究的具体目标是利用投影双光子光刻技术产生用于高通量纳米结构三维打印的工艺科学。该项目提出了三个核心研究领域:(1)高强度(接近每平方厘米太瓦)的光-物质相互作用之间的耦合,(2)短时间和小长度尺度(即毫秒和亚微米尺度)的聚合,以及(3)聚合对印刷纳米特征的物理性质的影响。具体的研究目标是:(I)产生基于物理的关系来预测印刷适宜性和印刷几何形状,(Ii)阐明确定速率限制的机制,以及(Iii)开发误差补偿技术,以最大限度地减少纳米级大型结构印刷过程中的缺陷。这项研究试图回答关于这一过程的三个基本问题。(1)是否可以建立普遍适用的预测关系?(2)理论和实际印刷速度限制是什么?(3)误差补偿是否可行?通过对潜在物理现象进行基于物理的计算建模、根据以前无法测量的经验数据验证模型以及现场过程监测和控制的组合来回答这些问题。该项目使用可扩展的加工技术推进了纳米器件的添加纳米制造。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Additively manufactured nanoporous foam targets for economically viable inertial fusion energy
增材制造的纳米多孔泡沫目标可提供经济可行的惯性聚变能
- DOI:10.1016/j.socimp.2023.100029
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Saha, Sourabh K.
- 通讯作者:Saha, Sourabh K.
Minimizing Shrinkage in Microstructures Printed With Projection Two-Photon Lithography
最大限度地减少投影双光子光刻印刷的微结构的收缩
- DOI:10.1115/msec2022-86076
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kim, Harnjoo;Saha, Sourabh K.
- 通讯作者:Saha, Sourabh K.
Printability Prediction in Projection Two-Photon Lithography Via Machine Learning Based Surrogate Modeling of Photopolymerization
通过基于机器学习的光聚合代理模型预测投影双光子光刻的适印性
- DOI:10.1115/1.4063021
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pingali, Rushil;Saha, Sourabh K.
- 通讯作者:Saha, Sourabh K.
Rapid printing of metal nanostructures through projection-based two-photon reduction
- DOI:10.1016/j.mfglet.2022.12.004
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Junghoi Choi;Harnjoo Kim;S. Saha
- 通讯作者:Junghoi Choi;Harnjoo Kim;S. Saha
Data for Printability Prediction in Projection Two-Photon Lithography via Machine Learning Based Surrogate Modeling of Photopolymerization
通过基于机器学习的光聚合替代模型预测投影双光子光刻中的适印性数据
- DOI:10.17632/8z29gzf6rd.1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Saha, Sourabh
- 通讯作者:Saha, Sourabh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sourabh Saha其他文献
Sourabh Saha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sourabh Saha', 18)}}的其他基金
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
- 批准号:
2240414 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
MASTER Scaffolds for Rapid, Single-Step Manufacture and Prototyping of CAR-T cells
用于快速、单步制造 CAR-T 细胞和原型制作的 MASTER 支架
- 批准号:
10713795 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Rapid, accessible, globally distributed RNA vaccine manufacture on demand
快速、方便、全球分布的 RNA 疫苗按需生产
- 批准号:
10025959 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Small Business Research Initiative
Development of a Rapid and Scalable Method for Bacteriophage Manufacture and Purification
开发一种快速且可扩展的噬菌体制造和纯化方法
- 批准号:
10497054 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Rapid manufacture of solid-state battery structures by additive manufacturing and Flash sintering
通过增材制造和闪速烧结快速制造固态电池结构
- 批准号:
10007480 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Composites: Made Faster - Rapid, physics-based simulation tools for composite manufacture
复合材料:制造得更快 - 用于复合材料制造的快速、基于物理的模拟工具
- 批准号:
EP/V039210/1 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Rapid Design of Bioinspired Alloys - From Modelling to Manufacture
仿生合金的快速设计 - 从建模到制造
- 批准号:
MR/T017783/1 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Fellowship
Title (150 characters) Metal hybrid rapid manufacture for prototyping precision parts
标题(150 个字符)用于精密零件原型制作的金属混合快速制造
- 批准号:
2444666 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Studentship
Rapid Metabolite Analyser for Medicines Manufacture
用于药品制造的快速代谢物分析仪
- 批准号:
104200 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
DMREF: Collaborative Research: Interface-promoted Assembly and Disassembly Processes for Rapid Manufacture and Transport of Complex Hybrid Nanomaterials
DMREF:合作研究:用于快速制造和运输复杂混合纳米材料的界面促进的组装和拆卸过程
- 批准号:
1629156 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Enabling rapid liquid and freeze-dried formulation design for the manufacture and delivery of novel biopharmaceuticals
实现快速液体和冻干配方设计,用于新型生物制药的制造和交付
- 批准号:
EP/N024796/1 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Research Grant