CAREER: Beyond differential expression: quantifying transcriptional dynamics and testing for adaptive value of transcriptomic responses at low temperature

职业:超越差异表达:量化转录动态并测试低温下转录组反应的适应性价值

基本信息

项目摘要

Many organisms change their physiology in response to changing environments, a phenomenon known as plasticity. Some of these changes can be beneficial, helping an organism to persist in unfavorable conditions. But other changes may be costly or damaging and may eventually lead to death if conditions are harsh enough. In common types of experiments that measure physiological plasticity, it is often impossible to identify which changes are beneficial, and which are not. This impedes understanding the physiological mechanism that may facilitate or limit responses to changing environments. This research explores how exposure to low temperatures affects transcription, a critical step in the process of synthesizing new proteins. By comparing low temperature responses of temperate fly species that often encounter very cold temperatures (well below freezing) to tropical fly species that rarely encounter cold temperatures, the investigators will identify which processes are beneficial for persistence in cold environments. The research will also attempt to quantify the lower temperature limits of transcription and will test whether these limits can evolve when flies experience new environments. This research will be integrated with biology education at the undergraduate level. The investigators will develop a Course-Based Undergraduate Research Experience (CURE) allowing students to participate in authentic research as part of an introductory biology course. Underrepresented student groups often have reduced access to research opportunities; the CURE will be purposefully designed to encourage broad participation and to provide a gateway to further research experiences for underrepresented student groups. Environmentally-induced changes in the transcriptome provide a widely used and relatively comprehensive snapshot of how cellular, tissue, or whole organismal physiology changes across environments. However, in commonly used experimental designs it is impossible to infer whether a change in abundance of any particular transcript has beneficial or detrimental effects on performance, and ultimately fitness. Common approaches to quantify differential expression in transcripts are further limited because they cannot distinguish the effects of new transcription and transcript degradation on transcript abundance. Thus, the transcriptional dynamics regulating transcriptomic environmental responses also remain largely unknown. This research will compare profiles of newly formed transcripts during low temperature exposures among replicate temperate- and tropical-origin Drosophila species. Combining sequencing of chromatin-associated RNA fractions and bromouridine-labeled new transcripts with standard messenger RNA sequencing, the research team will 1) identify putatively beneficial changes in new transcription or transcript degradation rates associated with adaptation to low temperature, and 2) characterize reaction norms for transcriptional dynamics in a comparative framework. The research will be integrated with undergraduate education by developing lab exercises that allow undergraduates to test the roles of individual genes in thermal adaptation using transgenically-modified lines of Drosophila melanogaster. This CURE will integrate with ongoing efforts at CU Denver to improve outcomes for underrepresented groups and increase their representation in STEM fields. The CURE will also generate a database of transparently reported results that will contribute to candidate gene testing in the field of thermal biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多生物体改变他们的生理反应,以应对不断变化的环境,这种现象被称为可塑性。其中一些变化可能是有益的,帮助生物体在不利的条件下坚持下去。但其他变化可能代价高昂或具有破坏性,如果条件足够恶劣,最终可能导致死亡。在测量生理可塑性的常见类型的实验中,通常不可能确定哪些变化是有益的,哪些不是。这阻碍了对可能促进或限制对变化的环境的反应的生理机制的理解。这项研究探讨了暴露在低温下如何影响转录,这是合成新蛋白质过程中的关键步骤。 通过比较经常遇到非常寒冷的温度(远低于冰点)的温带苍蝇物种与很少遇到寒冷温度的热带苍蝇物种的低温反应,研究人员将确定哪些过程有利于在寒冷环境中的持久性。该研究还将试图量化转录的温度下限,并测试当苍蝇经历新环境时,这些限制是否会演变。这项研究将与本科阶段的生物学教育相结合。研究人员将开发一个基于课程的本科生研究体验(CURE),让学生参与真实的研究,作为生物学入门课程的一部分。代表性不足的学生群体往往减少了获得研究的机会; CURE将有目的地设计,以鼓励广泛的参与,并提供一个网关,以进一步的研究经验,为代表性不足的学生群体。 环境诱导的转录组变化提供了一个广泛使用的和相对全面的快照,细胞,组织或整个生物体的生理学如何在环境中变化。然而,在常用的实验设计中,不可能推断任何特定转录物丰度的变化是否对表现以及最终的适应性具有有益或有害的影响。量化转录物中差异表达的常用方法进一步受到限制,因为它们不能区分新转录和转录物降解对转录物丰度的影响。因此,转录动力学调节转录组环境反应也仍然在很大程度上是未知的。这项研究将比较档案的新形成的成绩单在低温下暴露在复制温带和热带起源的果蝇物种。将染色质相关RNA组分和溴尿苷标记的新转录物的测序与标准信使RNA测序相结合,研究小组将1)确定与适应低温相关的新转录或转录物降解率的有益变化,2)在比较框架中表征转录动力学的反应规范。该研究将通过开发实验室练习与本科教育相结合,使本科生能够使用转基因修饰的果蝇品系测试单个基因在热适应中的作用。该CURE将与CU Denver正在进行的努力相结合,以改善代表性不足的群体的成果,并增加他们在STEM领域的代表性。CURE还将生成一个透明报告结果的数据库,这将有助于热生物学领域的候选基因测试。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Ragland其他文献

Gregory Ragland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Ragland', 18)}}的其他基金

Dimensions: Collaborative Research: Time after Time: Adaptive Seasonal Timing Drives the Sequential Origin of Community Biodiversity
维度:合作研究:一次又一次:适应性季节时间驱动群落生物多样性的顺序起源
  • 批准号:
    1638951
  • 财政年份:
    2016
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Testing for physiological and genetic independence of rapidly evolving lifecycle components in the apple maggot, a model for seasonal adaptation
合作研究:测试苹果蛆快速进化的生命周期组成部分的生理和遗传独立性,这是季节性适应的模型
  • 批准号:
    1700773
  • 财政年份:
    2016
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Testing for physiological and genetic independence of rapidly evolving lifecycle components in the apple maggot, a model for seasonal adaptation
合作研究:测试苹果蛆快速进化的生命周期组成部分的生理和遗传独立性,这是季节性适应的模型
  • 批准号:
    1451274
  • 财政年份:
    2014
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Testing for physiological and genetic independence of rapidly evolving lifecycle components in the apple maggot, a model for seasonal adaptation
合作研究:测试苹果蛆快速进化的生命周期组成部分的生理和遗传独立性,这是季节性适应的模型
  • 批准号:
    1256930
  • 财政年份:
    2013
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
  • 批准号:
    2309551
  • 财政年份:
    2023
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Continuing Grant
Solving High Dimensional Partial Differential Equations in Fintech and Beyond
求解金融科技及其他领域的高维偏微分方程
  • 批准号:
    RGPIN-2020-04275
  • 财政年份:
    2022
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Discovery Grants Program - Individual
Beyond spermatogenesis: Additional roles of seminal fluid fatty acids in male fertility and age-related reproductive success
超越精子发生:精液脂肪酸在男性生育力和与年龄相关的生殖成功中的其他作用
  • 批准号:
    10704750
  • 财政年份:
    2022
  • 资助金额:
    $ 91.4万
  • 项目类别:
Beyond spermatogenesis: Additional roles of seminal fluid fatty acids in male fertility and age-related reproductive success
超越精子发生:精液脂肪酸在男性生育力和与年龄相关的生殖成功中的其他作用
  • 批准号:
    10526745
  • 财政年份:
    2022
  • 资助金额:
    $ 91.4万
  • 项目类别:
Beyond ephrins: unbiased discovery of novel signaling pathways regulating topographic map formation and maturation in vivo.
超越肝配蛋白:公正地发现调节体内地形图形成和成熟的新型信号通路。
  • 批准号:
    10330851
  • 财政年份:
    2021
  • 资助金额:
    $ 91.4万
  • 项目类别:
Solving High Dimensional Partial Differential Equations in Fintech and Beyond
求解金融科技及其他领域的高维偏微分方程
  • 批准号:
    RGPIN-2020-04275
  • 财政年份:
    2021
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Discovery Grants Program - Individual
Solving High Dimensional Partial Differential Equations in Fintech and Beyond
求解金融科技及其他领域的高维偏微分方程
  • 批准号:
    RGPIN-2020-04275
  • 财政年份:
    2020
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic Problems of Partial Differential Equations with Random Coefficients: Homogenization and Beyond
具有随机系数的偏微分方程的渐近问题:齐次化及其他
  • 批准号:
    1807748
  • 财政年份:
    2017
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Continuing Grant
Integrable Partial Differential Equations Beyond Standard Assumptions on Initial Data
超出初始数据标准假设的可积偏微分方程
  • 批准号:
    1716975
  • 财政年份:
    2017
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Standard Grant
Asymptotic Problems of Partial Differential Equations with Random Coefficients: Homogenization and Beyond
具有随机系数的偏微分方程的渐近问题:齐次化及其他
  • 批准号:
    1613301
  • 财政年份:
    2016
  • 资助金额:
    $ 91.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了