Asymptotic Problems of Partial Differential Equations with Random Coefficients: Homogenization and Beyond
具有随机系数的偏微分方程的渐近问题:齐次化及其他
基本信息
- 批准号:1613301
- 负责人:
- 金额:$ 13.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is devoted to the analysis of systems with parameters that contain uncertainties and vary on multiple scales, and the goal is to understand their effects on the dynamics of the systems. Examples of such systems are ubiquitous in nature: climate and weather developments, oceanography, and seismology, just to name a few. Similarly, multiscale processes with built-in uncertainty are common in many large-scale societal phenomena, from stock market behavior to propagation of information through social media. The mathematical subject is partial differential equations (PDE) with random and highly oscillatory coefficients, and the project is aimed at deriving effective models that incorporate the impacts from the randomness and the separation of scales. The project is expected to result in connections to multi-scale algorithms, inverse problems, imaging, and uncertainty quantification, as well as to have applications in subjects such as climate prediction, geophysics, and materials science. The project involves three investigations, with a focus on questions related to stochastic homogenization, wave in random media and stochastic PDE: (i) study the quantitative aspects, including convergence rates and statistical fluctuations, of stochastic homogenization and macroscopic models of wave propagation in random media; (ii) analyze the effects of different correlation properties of the randomness on both qualitative and quantitative aspects; and (iii) investigate the transition from deterministic to stochastic models, and study the convergence to stochastic PDE beyond the homogenization regime.
这项研究致力于分析含有不确定性和在多个尺度上变化的参数的系统,目的是了解它们对系统动力学的影响。这类系统的例子在自然界中随处可见:气候和天气发展、海洋学和地震学,仅举几例。同样,具有内在不确定性的多尺度过程在许多大规模社会现象中也很常见,从股市行为到通过社交媒体传播信息。该项目的数学主题是具有随机和高度振荡系数的偏微分方程组(PDE),该项目的目的是推导包含随机性和尺度分离的影响的有效模型。该项目预计将导致与多尺度算法、反问题、成像和不确定性量化的联系,并将在气候预测、地球物理和材料科学等学科中得到应用。本项目包括三个方面的研究,重点是关于随机齐化、随机介质中的波和随机偏微分方程的问题:(I)研究随机齐化的数量方面,包括收敛速度和统计涨落,以及随机介质中波传播的宏观模型;(Ii)分析不同的随机性相关性在定性和定量方面的影响;以及(Iii)研究从确定性模型到随机模型的过渡,并研究在齐化制度之外向随机偏微分方程的收敛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Gu其他文献
Collecting and analyzing key-value data under shuffled differential privacy
洗牌差异隐私下键值数据的收集和分析
- DOI:
10.1007/s11704-022-1572-0 - 发表时间:
2022-09 - 期刊:
- 影响因子:4.2
- 作者:
Ning Wang;Wei Zheng;Zhigang Wang;Zhiqiang Wei;Yu Gu;Peng Tang;Ge Yu - 通讯作者:
Ge Yu
Numerical approach of liquid carbon dioxide injection in crushed coal and its experimental validation
碎煤中液态二氧化碳注入的数值方法及其实验验证
- DOI:
10.1002/er.5899 - 发表时间:
2020-09 - 期刊:
- 影响因子:4.6
- 作者:
Zhijin Yu;Song Yang;Yu Gu;Jun Deng - 通讯作者:
Jun Deng
Nanocatalytic Hydrogel with Rapid Photodisinfection and Robust Adhesion for Fortified Cutaneous Regeneration
具有快速光消毒和强大粘附力的纳米催化水凝胶,可增强皮肤再生
- DOI:
10.1021/acsami.2c17366 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yimeng Su;Xiumei Zhang;Yan Wei;Yu Gu;Huilun Xu;Ziming Liao;Liqin Zhao;Jingjing Du;Yinchun Hu;Xiaojie Lian;Weiyi Chen;Yi Deng;Di Huang - 通讯作者:
Di Huang
DELR: A double-level ensemble learning method for unsupervised anomaly detection. Knowledge-Based Systems
DELR:一种用于无监督异常检测的双层集成学习方法。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:8.8
- 作者:
Jia Zhang;Zhiyong Li;Ke Nai;Yu Gu;Ahmed Sallam - 通讯作者:
Ahmed Sallam
In-situ synthesis of a unique 0D/2D porous carbon integrated architecture for high-performance flexible micro-supercapacitors
原位合成独特的0D/2D多孔碳集成架构,用于高性能柔性微型超级电容器
- DOI:
10.1016/j.jpowsour.2022.231687 - 发表时间:
2022-09 - 期刊:
- 影响因子:9.2
- 作者:
Wenyu Wu;Huaxin Ma;Zhao Zhang;Zhi Zhang;Yu Gu;Weinan Gao;Wei Zhou;Ruijun Zhang - 通讯作者:
Ruijun Zhang
Yu Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Gu', 18)}}的其他基金
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
- 批准号:
2132937 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Intergovernmental Mobility Assignment
政府间流动分配
- 批准号:
2152741 - 财政年份:2021
- 资助金额:
$ 13.99万 - 项目类别:
Intergovernmental Personnel Award
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2042384 - 财政年份:2021
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2203014 - 财政年份:2021
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
- 批准号:
2203007 - 财政年份:2021
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
REU Site: Undergraduate Robotics Research in Human-Swarm Interaction
REU 网站:人-群交互中的本科生机器人学研究
- 批准号:
1851815 - 财政年份:2019
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
- 批准号:
1907928 - 财政年份:2019
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
Impact of Anthropogenic Air Pollution on Ice Clouds and Regional Radiative Forcing
人为空气污染对冰云和区域辐射强迫的影响
- 批准号:
1701526 - 财政年份:2017
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Asymptotic Problems of Partial Differential Equations with Random Coefficients: Homogenization and Beyond
具有随机系数的偏微分方程的渐近问题:齐次化及其他
- 批准号:
1807748 - 财政年份:2017
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
Radiative Transfer through the Black Carbon-Snow System: Fundamentals and Applications
通过黑碳雪系统的辐射传输:基础知识和应用
- 批准号:
1660587 - 财政年份:2017
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
相似海外基金
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
- 批准号:
2307342 - 财政年份:2023
- 资助金额:
$ 13.99万 - 项目类别:
Standard Grant
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
- 批准号:
22K20340 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
- 批准号:
RGPIN-2017-05567 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别:
Discovery Grants Program - Individual
Space-time parallel algorithms for large scale simulation and optimization problems governed by partial differential equations
用于偏微分方程控制的大规模模拟和优化问题的时空并行算法
- 批准号:
RGPIN-2021-02595 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of partial differential equations and inverse problems
偏微分方程和反问题的几何分析
- 批准号:
22K03381 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
CAREER: Integro-differential and Transport Problems in Partial Differential Equations
职业:偏微分方程中的积分微分和输运问题
- 批准号:
2144232 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别:
Continuing Grant
Space-time parallel algorithms for large scale simulation and optimization problems governed by partial differential equations
用于偏微分方程控制的大规模模拟和优化问题的时空并行算法
- 批准号:
RGPIN-2021-02595 - 财政年份:2021
- 资助金额:
$ 13.99万 - 项目类别:
Discovery Grants Program - Individual