CAREER: Building Hierarchical Polymers with Light to Unify Softness, Resilience, and Conductivity
职业:用光构建多级聚合物以统一柔软性、弹性和导电性
基本信息
- 批准号:2045336
- 负责人:
- 金额:$ 62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:Polymers have become ubiquitous in our daily lives owing to their inherent low cost and tunable properties. Their versatility is a direct result of their chemical composition and the way in which the molecules are connected. However, current control over both composition and structure pales in comparison to that found in natural systems, which have an evolved hierarchical architecture tuned for specific functions. As such, synthetic materials often interface poorly with biological ones, precluding, for example, the ability to study and treat disease. This program targets the preparation of soft and resilient (i.e., strong and stretchy) polymers that mimic natural tissue (e.g., skin, heart, and lung), while additionally imparting electrical conductivity to facilitate communication between modern electronic devices and biological systems. Improving the communication between devices and biology will allow scientists and doctors to better study and control natural functions in an emergent area of research: bioelectronics. The proposed materials build off a foundation of industrially relevant polymers by introducing new molecular architectures to increase softness for better interfacing with natural systems without compromising strength. Moreover, low-energy visible light will be leveraged to define when and where chemical reactions take place, enabling the fabrication of hierarchical structures in a process that is amenable to future implementation in 3D printing.Ultimately, to solve these challenging interdisciplinary scientific problems requires a well-prepared diverse scientific workforce, and diversification in STEM requires education and engagement at an early stage of professional development. Therefore, as part of this project a first-year undergraduate polymer research course will be developed at the University of Texas at Austin, along with a hands-on polymer activity for students at local middle/high schools in East Austin with large populations of underrepresented groups. Overall, the proposed research serves the national interest by promoting the progress of science through fundamental discovery, educating the next generation STEM workforce, and facilitating the development of advanced materials that will improve health and welfare.TECHNICAL SUMMARY:Complementary strategies to generating hierarchical conductive polymers with tissue-like softness and resilience (strength + elasticity) are described. While synthetic polymers have become ubiquitous in our daily lives, control over their composition, structure, and morphology pales in comparison to that found in nature, limiting functionality and possible end-use applications. Softness and resilience are two mechanical parameters expressed by a number of biological materials (e.g., skin, heart, and lung tissue) to prevent rupture, yet harnessing these together synthetically remains elusive. Moreover, communication through modern technology relies on electronic transport, while biological systems operate via the movement of ions. These mechanical and communication discrepancies have hampered the study and control of biological processes via bioelectronics for medicine. To close the technology-biology gap, a bottom-up approach using rapid spatiotemporally controlled light-based polymerization chemistry to access materials with complex architectures and tailorable mechanical and transport properties are proposed. The materials sit in one of two categories: 1) ABA triblock copolymers and 2) interpenetrating polymer networks (IPNs). Multiple levels of hierarchical structure across length scales within these materials will provide the missing links to unify softness, resilience, and conductivity, unveiling critical, yet fundamental, structure-property relationships to inform further materials optimization. Given the generality of block copolymers and IPNs, and emerging interest in electronic/ionic transduction for bioelectronics and light-based chemistry for 3D printing, the scientific discoveries from the proposed research will lay a foundation from which a myriad of next-generation applications will emerge (e.g., bioelectronics and soft robotics)..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术综述:聚合物由于其固有的低成本和可调性能,已经在我们的日常生活中变得无处不在。它们的多功能性是它们的化学成分和分子连接方式的直接结果。然而,目前对组成和结构的控制与自然系统中的控制相比相形见绌,自然系统具有针对特定功能调整的进化的层次结构。因此,合成材料与生物材料的接口往往很差,例如,排除了研究和治疗疾病的能力。该计划的目标是制备模拟自然组织(如皮肤、心脏和肺)的柔软和有弹性(即,坚韧和有弹性)的聚合物,同时还提供导电性,以促进现代电子设备和生物系统之间的通信。改善设备和生物之间的交流将使科学家和医生能够更好地研究和控制生物电子学这一新兴研究领域的自然功能。建议的材料通过引入新的分子结构来增加柔软性,从而在不影响强度的情况下更好地与自然系统连接,从而为工业相关聚合物奠定了基础。此外,将利用低能量可见光来定义发生化学反应的时间和地点,使分层结构的制造能够服从于未来在3D打印中的实施。最终,要解决这些具有挑战性的跨学科科学问题,需要一支准备充分的多样化的科学队伍,而STEM的多样化需要在专业发展的早期阶段进行教育和参与。因此,作为该项目的一部分,得克萨斯大学奥斯汀分校将开设一门一年级的本科生聚合物研究课程,同时还将为东奥斯汀拥有大量代表不足群体的当地初中/高中的学生开展亲身实践聚合物活动。总体而言,拟议的研究通过基础发现促进科学进步,教育下一代STEM劳动力,并促进先进材料的开发,从而改善健康和福利,从而服务于国家利益。技术摘要:描述了生产具有组织状柔软和弹性(强度+弹性)的分级导电聚合物的补充策略。虽然合成聚合物在我们的日常生活中已经变得无处不在,但与自然界中发现的相比,对其组成、结构和形态的控制相形见绌,限制了功能和可能的最终用途。柔软度和弹性是许多生物材料(如皮肤、心脏和肺组织)表达的两个力学参数,以防止破裂,但综合利用这两个参数仍然难以实现。此外,通过现代技术进行的通信依赖于电子传输,而生物系统则通过离子的运动来运行。这些机械和通讯上的差异阻碍了通过用于医学的生物电子学来研究和控制生物过程。为了缩小技术与生物的差距,提出了一种自下而上的方法,使用快速时空可控的光聚合化学来获得具有复杂结构和可定制的力学和传输特性的材料。这些材料分为两类:1)ABA三嵌段共聚物和2)互穿聚合物网络(IPN)。这些材料内部跨越长度尺度的多个层次结构将提供缺少的环节,以统一柔软性、弹性和导电性,揭示关键但基本的结构-性能关系,从而为进一步的材料优化提供信息。鉴于嵌段共聚物和IPN的普遍性,以及对用于生物电子的电子/离子转换和用于3D打印的光化学的新兴趣,拟议研究的科学发现将为出现无数下一代应用(例如,生物电子学和软机器人)奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanically robust hydrophobized double network hydrogels and their fundamental salt transport properties
- DOI:10.1002/pol.20210260
- 发表时间:2021-07-26
- 期刊:
- 影响因子:3.4
- 作者:Allen,Marshall J.;Sujanani,Rahul;Page,Zachariah A.
- 通讯作者:Page,Zachariah A.
Polymeric multimaterials by photochemical patterning of crystallinity
- DOI:10.1126/science.add6975
- 发表时间:2022-10-14
- 期刊:
- 影响因子:56.9
- 作者:Rylski, Adrian K.;Cater, Henry L.;Page, Zachariah A.
- 通讯作者:Page, Zachariah A.
Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks
多晶型材料:通过选择性引发互穿聚合物网络来空间定制机械性能
- DOI:10.1002/adma.202210208
- 发表时间:2022
- 期刊:
- 影响因子:29.4
- 作者:Allen, Marshall J.;Lien, Hsu‐Ming;Prine, Nathaniel;Burns, Carter;Rylski, Adrian K.;Gu, Xiaodan;Cox, Lewis M.;Mangolini, Filippo;Freeman, Benny D.;Page, Zachariah A.
- 通讯作者:Page, Zachariah A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachariah Page其他文献
Zachariah Page的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachariah Page', 18)}}的其他基金
Controlling Energy Distribution Pathways in Designer Photocatalysts for Efficient Polymer Synthesis
控制设计光催化剂中的能量分布途径以实现高效聚合物合成
- 批准号:
2155017 - 财政年份:2022
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
Boron Dipyrromethene Photocages for Mild and Selective Light-Driven Polymer Chemistry
用于温和选择性光驱动聚合物化学的硼二吡咯亚甲基光笼
- 批准号:
2107877 - 财政年份:2021
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
相似国自然基金
基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
- 批准号:31771933
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Collaborative R&D
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
SME Support
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Legacy Department of Trade & Industry
Stories of Divided Politics: Polarisation and Bridge-Building in Colombia and Britain
政治分裂的故事:哥伦比亚和英国的两极分化和桥梁建设
- 批准号:
EP/Y03628X/1 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Research Grant
Building Desirable and Resilient Public Media Futures: Establishing the Centre for Public Values, Technology & Society
建设理想且有弹性的公共媒体未来:建立公共价值观和技术中心
- 批准号:
MR/X033651/1 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Fellowship
Expanding syphilis screening among pregnant women in Indonesia using the rapid dual test for syphilis & HIV with capacity building: The DUALIS Study
使用梅毒快速双重检测扩大印度尼西亚孕妇梅毒筛查
- 批准号:
MR/Y004825/1 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Research Grant
Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
- 批准号:
MR/Z503514/1 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Research Grant
Building Partnerships to Conserve Limestone Pavements
建立伙伴关系以保护石灰石路面
- 批准号:
NE/Y004930/1 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Research Grant
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Cooperative Agreement