Controlling Energy Distribution Pathways in Designer Photocatalysts for Efficient Polymer Synthesis

控制设计光催化剂中的能量分布途径以实现高效聚合物合成

基本信息

  • 批准号:
    2155017
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Zachariah A. Page and Sean T. Roberts of The University of Texas at Austin are studying how the chemical structure of visible and near-infrared light absorbing dye molecules influences their ability to catalyze the additive manufacturing of plastics in an energy-efficient manner. Traditional light-based manufacturing relies on the use of dyes that operate only with high-energy ultraviolet (UV) light. This reliance on UV light is both energy-intensive and limits the functionality of materials that can be produced due to the low penetration depth of UV light and its potential to induce photodamage. The funded research teams aim to overcome this limitation by synthesizing new dye molecules comprised of earth-abundant elements and examining the ability of these so-called 'photocatalysts' to efficiently harvest the energy contained in visible/near-infrared (IR) light to power chemical reactions. These fundamental efforts are anticipated to increase the accessibility of light-based manufacturing at an affordable price, which has direct implications in technologies such as coatings, microelectronics, and 3D printing. The broader impacts of the project will extend to providing new training opportunities for both undergraduate and graduate students in interdisciplinary chemistry with activities ranging from chemical synthesis to laser-based spectroscopic characterization. Moreover, Page and Roberts will bridge educational programs at UT Austin and Austin Community College to create a channel for students to share knowledge and interact via hands-on research opportunities in an effort to improve diversity in STEM (science, technology, engineering and mathematics).Under this award, the UT-Austin collaborative team of Page and Roberts has as its overarching goal the development of eco-conscious photocatalysts that can harvest low-energy, visible-to-near infrared light with efficiency and selectivity that extend beyond our current capabilities with UV light, the industrial gold standard. To this end, three aims will be addressed. The first involves the establishment of a quantitative correlation between the structure of heavy-atom free photocatalysts (e.g., those without toxic halogens or expensive metals) and their ability to induce polymerization via long-lived spin-triplet states. The second aim is to identify individual dyes capable of absorbing multiple different colors of light and using that distinct, dual-band absorptive property to drive orthogonal chemical transformations (i.e., wavelength-selective catalysis). The third aim seeks to drive rapid photopolymerizations in UV-opaque materials by converting more transparent low energy visible/near-infrared photons into high-energy ones via triplet fusion-based photon upconversion. Each aim combines the synthesis of novel dye molecules with ultrafast spectroscopic characterization to create a closed-loop of knowledge with the aim of accelerating photocatalyst optimization. If successful, this work could have significant scientific broader impacts as there is great interest in establishing more efficient methods of harvesting energy from near IR to visible light to drive chemical reactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,德克萨斯大学奥斯汀分校的Zachariah A. Page和Sean T. Roberts正在研究可见光和近红外光吸收染料分子的化学结构如何影响它们以节能方式催化塑料增材制造的能力。传统的以光为基础的制造依赖于染料的使用,这些染料只能在高能紫外线(UV)光下工作。这种对紫外光的依赖是能源密集型的,并且由于紫外光的低穿透深度及其诱导光损伤的潜力,限制了可以生产的材料的功能。资助的研究团队旨在通过合成由地球上丰富的元素组成的新染料分子来克服这一限制,并检查这些所谓的“光催化剂”的能力,以有效地收集可见光/近红外(IR)光中包含的能量,为化学反应提供动力。这些基础性的努力预计将以可承受的价格增加光基制造的可及性,这对涂料、微电子和3D打印等技术有直接的影响。该项目的更广泛影响将扩展到为跨学科化学的本科生和研究生提供新的培训机会,活动范围从化学合成到基于激光的光谱表征。此外,佩奇和罗伯茨将在德克萨斯大学奥斯汀分校和奥斯汀社区学院的教育项目之间架起桥梁,为学生创造一个分享知识的渠道,并通过实践研究机会进行互动,以提高STEM(科学、技术、工程和数学)的多样性。根据该奖项,德克萨斯大学奥斯汀分校的佩奇和罗伯茨合作团队的总体目标是开发具有生态意识的光催化剂,这种光催化剂可以收获低能量、可见光到近红外光,其效率和选择性超出了我们目前的工业黄金标准紫外光的能力。为此目的,将实现三个目标。第一个涉及建立无重原子光催化剂(例如,不含有毒卤素或昂贵金属的光催化剂)的结构与它们通过长寿命自旋三重态诱导聚合的能力之间的定量相关性。第二个目标是识别能够吸收多种不同颜色光的单个染料,并利用这种独特的双波段吸收特性来驱动正交化学转化(即波长选择性催化)。第三个目标是通过基于三重态融合的光子上转换,将更透明的低能量可见光/近红外光子转化为高能光子,从而推动紫外线不透明材料中的快速光聚合。每个目标都将新型染料分子的合成与超快光谱表征相结合,以创建一个闭环的知识,旨在加速光催化剂的优化。如果成功,这项工作可能会产生重大的科学影响,因为人们对建立更有效的方法从近红外到可见光收集能量来驱动化学反应非常感兴趣。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Do The Twist: Efficient Heavy‐Atom‐Free Visible Light Polymerization Facilitated by Spin‐Orbit Charge Transfer Inter‐system Crossing
扭转局面:自旋轨道电荷转移系统间穿越促进高效重原子自由可见光聚合
  • DOI:
    10.1002/anie.202219140
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Uddin, Ain;Allen, Seth R.;Rylski, Adrian K.;O'Dea, Connor J.;Ly, Jack T.;Grusenmeyer, Tod A.;Roberts, Sean T.;Page, Zachariah A.
  • 通讯作者:
    Page, Zachariah A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zachariah Page其他文献

Zachariah Page的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zachariah Page', 18)}}的其他基金

Boron Dipyrromethene Photocages for Mild and Selective Light-Driven Polymer Chemistry
用于温和选择性光驱动聚合物化学的硼二吡咯亚甲基光笼
  • 批准号:
    2107877
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
CAREER: Building Hierarchical Polymers with Light to Unify Softness, Resilience, and Conductivity
职业:用光构建多级聚合物以统一柔软性、弹性和导电性
  • 批准号:
    2045336
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
  • 批准号:
    2313768
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Diagnosis of anisotropic and non-equilibrium energy distribution by collisional radiative process of volumetric recombining plasma
体积重组等离子体碰撞辐射过程诊断各向异性和非平衡能量分布
  • 批准号:
    23H01148
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ASCENT: Boosting Cyber and Physical Resilience of Power Electronics-Dominated Distribution Grids in Energy Space
ASCENT:增强能源空间中电力电子主导的配电网的网络和物理弹性
  • 批准号:
    2328205
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
GEM: Energy Conversion Associated with Non-equilibrium Velocity Distribution Functions in Dayside Magnetopause Reconnection
GEM:与日侧磁顶重联中非平衡速度分布函数相关的能量转换
  • 批准号:
    2247718
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
  • 批准号:
    2313767
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Planning of Sustainable Distribution Networks Utilizing Mobile Energy Storage Systems
利用移动储能系统规划可持续配电网络
  • 批准号:
    RGPIN-2021-03084
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Discovery Grants Program - Individual
Energy Cost Savings in Canadian Water Distribution Systems Through Data Analytics
通过数据分析节省加拿大供水系统的能源成本
  • 批准号:
    RGPIN-2019-04084
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Discovery Grants Program - Individual
Neutron distribution of atomic nuclei by low-energy electron scattering
通过低能电子散射观察原子核的中子分布
  • 批准号:
    22K18706
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Strengthening Green Energy Sources in Canada: Optical Sensors for Safe Storage and Distribution of Hydrogen
加强加拿大的绿色能源:用于安全储存和分配氢气的光学传感器
  • 批准号:
    570435-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Alliance Grants
Energy Storage solutions for Zero Carbon 2050 electric distribution systems
零碳 2050 配电系统的储能解决方案
  • 批准号:
    571710-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了