CAREER: Functional Fouling of Surfaces by Interfacial Silk Fibroin Self-Assembly

职业:通过界面丝素蛋白自组装实现表面功能性污垢

基本信息

  • 批准号:
    2045510
  • 负责人:
  • 金额:
    $ 59.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThe tendency of proteins in water to adhere randomly to nearby surfaces is a ubiquitous phenomenon in nature. This phenomenon, known as “fouling,” is usually considered a confounding problem which can lead to a wide range of issues, such as clinical failure of biomedical implants and undesirable attachment of marine organisms to ship hulls. However, this project aims to leverage the persistence of protein fouling as the basis of a new, highly versatile approach for creating multifunctional surfaces. Using silk fibroins, a class of biocompatible proteins derived from or inspired by the main component of natural silk, this project will develop methods for creating robust nanometer-thin coatings on a variety of surfaces without requiring hazardous chemicals or complex instrumentation. Towards this goal, the project will seek to gain a fundamental understanding of the fouling behavior of silk fibroins as they undergo self-assembly – an aggregation process which underlies the spinning of silk threads by insects and spiders. Through a combination of synthetic biology and surface-sensitive material characterization techniques, this project will also reveal fundamental insights about how proteins and other biomacromolecules in nature are able to adhere tenaciously to surfaces without specific chemical reactions. Furthermore, this project will develop a bio-inspired strategy by which the function of surfaces, such as biocompatibility or therapeutic activity, can be modified for applications in human healthcare and sustainability. To facilitate the dissemination of complex scientific findings from this project to a global public audience, the Merian Studio for Visual Communication will be founded at Rensselaer Polytechnic Institute. This technology-equipped workspace will enable students to produce compelling visual educational tools, such as 2D/3D graphics and animations. As part of this visual communication effort, the project will also support an interdisciplinary team of art and engineering students to create an interactive video game that intuitively teaches the fundamental concepts of natural protein assembly and fouling phenomena.TECHNICAL SUMMARYThis proposal aims to develop a powerful bottom-up strategy for creating multifunctional thin-film coatings that leverages the unique self-assembly behavior of silk fibroins at solid-liquid interfaces. Such interfacial behavior, where adsorption occurs concurrently with protein-protein assembly, is a type of robust “fouling” which has not been sufficiently studied to date, despite being an important aspect underlying natural biomacromolecular adhesion. Furthermore, whereas fouling of surfaces by proteins has long been considered an undesirable but unavoidable problem, interfacial silk fibroin self-assembly can be used as a versatile non-covalent approach for modifying a variety of surfaces under mild, biocompatible conditions without complex chemistries or advanced instrumentation. This project will seek to gain a fundamental understanding of the growth of adherent and defect-free coatings via interfacial protein self-assembly by 1) relating silk fibroin adsorption on high and low surface energy substrates to tunable solution-phase assembly phenomena, 2) determining the role of protein sequence and size on coating formation using de novo designed recombinant silk fibroins, 3) visualizing the effects of nanoscale substrate topography on coating formation, and 4) exploring co-assembly of enzymes and growth factors with silk fibroins as a one-pot method for creating therapeutically active surfaces. The project will generate a comprehensive model for interfacial assembly of network-forming proteins, such as silk fibroins, in terms of protein-protein and protein-surface interactions. Moreover, this work will establish a new non-covalent approach towards functionalizing surfaces for a variety of materials applications. To facilitate the dissemination of complex scientific findings from the proposed research to a broad lay audience, the project will establish the “Merian Studio for Visual Communication” at Rensselaer Polytechnic Institute, which will be a technology-equipped workspace enabling students to produce compelling visual educational tools, such as 2D/3D graphics and animations. The project will also support an interdisciplinary team of art and engineering undergraduate students to create an interactive video game that teaches fundamental concepts in protein adsorption and assembly related to the proposed research for use in global outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结水中蛋白质随机附着在附近表面的倾向是自然界中普遍存在的现象。这种现象被称为“污垢”,通常被认为是一个令人困惑的问题,可能会导致一系列问题,如生物医学植入物的临床失败和海洋生物在船体上的不良附着。然而,该项目旨在利用蛋白质污垢的持久性作为创建多功能表面的新的、高度通用的方法的基础。利用丝素蛋白,一种源自天然丝素主要成分或受其启发的生物相容性蛋白质,该项目将开发出在各种表面上创建坚固的纳米薄涂层的方法,而不需要危险的化学品或复杂的仪器。为了实现这一目标,该项目将寻求从根本上了解丝素蛋白在自组装过程中的污染行为--这是一种聚集过程,是昆虫和蜘蛛纺丝的基础。通过结合合成生物学和表面敏感材料表征技术,该项目还将揭示自然界中的蛋白质和其他生物大分子如何能够在没有特定化学反应的情况下顽强地附着在表面上的基本见解。此外,该项目将开发一种生物启发战略,通过该战略,表面的功能,如生物兼容性或治疗活性,可以被修改,以应用于人类医疗保健和可持续发展。为了方便向全球公众传播这一项目的复杂科学发现,梅里安视觉交流工作室将在伦斯勒理工学院成立。这个配备了技术的工作空间将使学生能够制作引人注目的可视化教育工具,如2D/3D图形和动画。作为这项视觉交流工作的一部分,该项目还将支持一个由艺术和工程专业的学生组成的跨学科团队来创建一款互动视频游戏,直观地教授自然蛋白质组装和污垢现象的基本概念。技术总结该提案旨在开发一种强大的自下而上的策略,以创建多功能薄膜涂层,利用丝素蛋白在固-液界面的独特自组装行为。这种吸附与蛋白质-蛋白质组装同时发生的界面行为,是一种健壮的“污垢”,尽管是自然生物大分子粘合的一个重要方面,但迄今为止还没有得到充分的研究。此外,虽然蛋白质对表面的污染一直被认为是一个不受欢迎但不可避免的问题,但界面丝素自组装可以作为一种通用的非共价方法,在温和的生物相容条件下修饰各种表面,而不需要复杂的化学反应或先进的仪器。这个项目将通过1)将丝素蛋白在高和低表面能底物上的吸附与可调的溶液相组装现象联系起来,2)确定蛋白质序列和尺寸对使用从头设计的重组丝素蛋白形成涂层的作用,3)可视化纳米级底物形貌对涂层形成的影响,以及4)探索酶和生长因子与丝素蛋白的共同组装,作为一种创建具有治疗活性的表面的方法,来寻求通过界面蛋白自组装获得附着的和无缺陷的涂层的基本原理。该项目将从蛋白质-蛋白质和蛋白质-表面相互作用的角度为网络形成蛋白(如丝素蛋白)的界面组装生成一个全面的模型。此外,这项工作将建立一种新的非共价方法,使表面功能化,用于各种材料应用。为了促进将拟议研究的复杂科学发现传播给广大的非专业受众,该项目将在伦斯勒理工学院建立“梅里安视觉交流工作室”,这将是一个配备技术的工作空间,使学生能够制作引人注目的视觉教育工具,如2D/3D图形和动画。该项目还将支持一个由艺术和工程本科生组成的跨学科团队,以创建一个互动视频游戏,教授与拟议研究相关的蛋白质吸附和组装的基本概念,用于全球外展。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications
  • DOI:
    10.1016/j.actbio.2022.11.025
  • 发表时间:
    2022-12-30
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Puhl,Devan L.;Funnell,Jessica L.;Gilbert,Ryan J.
  • 通讯作者:
    Gilbert,Ryan J.
One-Pot Assembly of Drug-Eluting Silk Coatings with Applications for Nerve Regeneration
  • DOI:
    10.1021/acsbiomaterials.3c01042
  • 发表时间:
    2023-12-18
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Fink,Tanner D.;Funnell,Jessica L.;Zha,R. Helen
  • 通讯作者:
    Zha,R. Helen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Runye Zha其他文献

Runye Zha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Runye Zha', 18)}}的其他基金

NSF Convergence Accelerator Track I: Enhanced Biobased Textiles and Composites Via Microbially Produced Silk Proteins
NSF 融合加速器轨道 I:通过微生物产生的丝蛋白增强生物基纺织品和复合材料
  • 批准号:
    2236099
  • 财政年份:
    2022
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Photo-Induced Force Microscope for High Resolution Nanoscale Spectroscopic Imaging and Analysis
MRI:获取光诱导力显微镜以进行高分辨率纳米级光谱成像和分析
  • 批准号:
    2215905
  • 财政年份:
    2022
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant
RAPID: Polyelectrolyte Coatings as an Approach to Extend N95 Respirator Usage Lifespan
RAPID:聚电解质涂层是延长 N95 呼吸器使用寿命的方法
  • 批准号:
    2028763
  • 财政年份:
    2020
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant
FMSG: GOALI: Microbial Upcycling of Petrochemical Polymer Waste into High Value Protein-Based Polymers for a Circular Economy
FMSG:GOALI:通过微生物将石化聚合物废物升级为高价值蛋白质基聚合物,实现循环经济
  • 批准号:
    2036768
  • 财政年份:
    2020
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant

相似国自然基金

高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
  • 批准号:
    502607
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Research Grant
Functional implications of focal white matter lesions on neuronal circuits
局灶性白质病变对神经元回路的功能影响
  • 批准号:
    MR/Y014537/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Research Grant
Decoding functional glycan biosynthesis
解码功能性聚糖生物合成
  • 批准号:
    BB/Y000102/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant
REU Site: Research Experience in Functional Materials for Undergraduates in Chemistry at the University of South Florida
REU 网站:南佛罗里达大学化学专业本科生功能材料研究经验
  • 批准号:
    2349085
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307253
  • 财政年份:
    2024
  • 资助金额:
    $ 59.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了