CAREER: Frontiers in Matrix Sketching

职业:矩阵草图的前沿

基本信息

  • 批准号:
    2045590
  • 负责人:
  • 金额:
    $ 56.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Advances in sensing and storage technology have increased the ability to collect and share huge amounts of data. From satellite imagery, to genetic data, to web content, richer datasets offer the promise of improved data-driven discovery and decision making across science, engineering, and industry. Realizing this promise, however, requires enormous computational effort. The goal of this project is to democratize the data revolution by developing new algorithms to efficiently process the world's largest datasets, without the need for the world's largest supercomputers. To do so, the investigator and his team will study a powerful algorithmic technique known as "matrix sketching". The key idea is to quickly compress a large dataset (represented as a matrix of numbers) down to its most essential information by eliminating redundancy and noise. The compressed data can then be efficiently digested by downstream algorithms for machine learning and statistical inference. This project will advance the state-of-the-art in matrix sketching by taking an interdisciplinary approach, combining tools from theoretical computer science with methods from computational and applied mathematics. The project also involves a major educational component, aimed at improving U.S. mathematics education through closer ties with applications in STEM fields. The project will support an international high-school applied-mathematics competition, the development of curricular material and workshops for high-school educators, and course development to better prepare university students for careers in algorithms, machine learning, and data science. To advance research in matrix sketching, the project is centered around three main objectives, each involving problems of practical importance, as well as motivating theoretical questions that will more broadly impact algorithms research. The first objective is to develop sketching techniques that move beyond low-rank matrix compression, which only captures information about the largest-magnitude components of a matrix’s spectrum. Motivated by emerging applications in network science, deep learning, and computational physics, the research team is developing techniques that instead capture coarse information about the entire spectrum of a matrix. The second objective is to develop methods that allow for higher accuracy by combining existing sketching algorithms with powerful tools for interactive refinement. The goal is to design algorithms with runtimes that depend logarithmically, instead of polynomially, on problem accuracy. The final objective is to extend the impact of sketching beyond applications where data is over-abundant, by addressing important problems where sufficient, high-quality data remains a luxury. The theoretical tools of matrix sketching and data subsampling are being used to design smarter data-collection strategies for the “small-data” regime, advancing the state-of-the-art in active learning and experimental design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感和存储技术的进步提高了收集和共享大量数据的能力。从卫星图像到遗传数据,再到网络内容,更丰富的数据集为科学、工程和工业领域改进数据驱动的发现和决策提供了希望。然而,实现这一承诺需要大量的计算工作。该项目的目标是通过开发新的算法来有效地处理世界上最大的数据集,而不需要世界上最大的超级计算机来实现数据革命的民主化。为此,研究人员和他的团队将研究一种强大的算法技术,称为“矩阵素描”。其关键思想是通过消除冗余和噪声来快速压缩大型数据集(表示为数字矩阵),以获得最基本的信息。然后,压缩后的数据可以通过下游机器学习和统计推理算法有效地消化。该项目将通过跨学科的方法,将理论计算机科学的工具与计算和应用数学的方法相结合,推进矩阵草图的最新技术。该项目还涉及一个重要的教育组成部分,旨在通过与STEM领域的应用建立更紧密的联系来改善美国的数学教育。该项目将支持国际高中应用数学竞赛,为高中教育工作者开发课程材料和研讨会,以及课程开发,以更好地为大学生在算法,机器学习和数据科学方面的职业生涯做好准备。为了推进矩阵素描的研究,该项目围绕三个主要目标,每个目标都涉及具有实际重要性的问题,以及激发理论问题,这些问题将更广泛地影响算法研究。第一个目标是开发超越低秩矩阵压缩的草图技术,低秩矩阵压缩仅捕获关于矩阵频谱的最大幅度分量的信息。受网络科学、深度学习和计算物理学中新兴应用的启发,研究团队正在开发一种技术,以捕获关于矩阵整个频谱的粗略信息。第二个目标是开发方法,允许更高的准确性,通过结合现有的草图算法与强大的工具进行交互式细化。我们的目标是设计算法的运行时依赖于数学,而不是多项式,问题的准确性。最终目标是通过解决足够的高质量数据仍然是奢侈品的重要问题,将草图绘制的影响扩展到数据过于丰富的应用程序之外。矩阵草图和数据子采样的理论工具被用于为“小数据”制度设计更智能的数据收集策略,推进主动学习和实验设计的最新技术。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-Linear Sample Complexity for $L_p$ Polynomial Regression
$L_p$ 多项式回归的近线性样本复杂度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. A. Meyer;Cameron Musco;Christopher Musco;David P. Woodruff;Samson Zhou
  • 通讯作者:
    Samson Zhou
Structured Semidefinite Programming for Recovering Structured Preconditioners
用于恢复结构化预条件子的结构化半定规划
Dimensionality Reduction for General {KDE} Mode Finding
一般 {KDE} 模式查找的降维
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
具有 Lipschitz 非线性的单神经元模型的主动学习
Low-Memory Krylov Subspace Methods for Optimal Rational Matrix Function Approximation
最优有理矩阵函数逼近的低内存 Krylov 子空间方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Musco其他文献

Understanding Filter Bubbles and Polarization in Social Networks
了解社交网络中的过滤气泡和极化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Uthsav Chitra;Christopher Musco
  • 通讯作者:
    Christopher Musco
Correlation Sketches for Approximate Join-Correlation Queries
近似连接相关查询的相关草图
Near-optimal hierarchical matrix approximation from matrix-vector products
矩阵向量积的近最优分层矩阵近似
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyler Chen;Feyza Duman Keles;Diana Halikias;Cameron Musco;Christopher Musco;David Persson
  • 通讯作者:
    David Persson
Dimensionality reduction for sparse and structured matrices
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Musco
  • 通讯作者:
    Christopher Musco
Faster Spectral Density Estimation and Sparsification in the Nuclear Norm
核规范中更快的谱密度估计和稀疏化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujia Jin;Ishani Karmarkar;Christopher Musco;Aaron Sidford;A. Singh
  • 通讯作者:
    A. Singh

Christopher Musco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

New Frontiers for Anonymous Authentication
匿名身份验证的新领域
  • 批准号:
    DE240100282
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Discovery Early Career Researcher Award
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
  • 批准号:
    2415310
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
New Frontiers in Large-Scale Polynomial Optimisation
大规模多项式优化的新领域
  • 批准号:
    DE240100674
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Discovery Early Career Researcher Award
RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Continuing Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
  • 批准号:
    2347894
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
Conference: USA-UK-China-Israel Workshop on Frontiers in Ecology and Evolution of Infectious Diseases
会议:美国-英国-中国-以色列生态学和传染病进化前沿研讨会
  • 批准号:
    2406564
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
Mapping the Frontiers of Private Property in Australia
绘制澳大利亚私有财产的边界
  • 批准号:
    DP240100395
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Discovery Projects
Conference: FRONTIERS OF ENGINEERING (2024 US FOE, 2024 China-America FOE, and 2025 German-American FOE)
会议:工程前沿(2024年美国之敌、2024年中美之敌、2025年德美之敌)
  • 批准号:
    2405026
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
Frontiers in gravitational wave astronomy (FRoGW)
引力波天文学前沿(FRoGW)
  • 批准号:
    EP/Y023706/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了