CAREER: Coupling Climate and Human Health Models to Build Pathways to Extreme Heat Resilience
职业:将气候和人类健康模型结合起来,建立极端耐热能力的途径
基本信息
- 批准号:2045663
- 负责人:
- 金额:$ 63.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Extreme heat is invisible, silent, and deadly, and negatively affects human health and productivity globally. Understanding how people are affected by extreme heat, and how best to cope, is important for societal well-being and economic security. New approaches to adapt to heat are urgently needed as cities grow and temperatures rise. Existing models of present and future heat-health impacts focus on survivability and over-simplify how people respond both physiologically and behaviorally to heat across indoor and outdoor spaces. But survivable does not equal livable––addressing human complexities is needed to fully understand the exposure pathways that cause heat to become a health hazard. The goal of this Faculty Early Career Development (CAREER) grant is to advance our scientific understanding of the range of current and future impacts of extreme heat on human health across different climate types and indoor and outdoor environments. Models of human heat balance, regional climate at multiple scales, and building interior heat exposure will be combined with human vulnerability and adaptive capacity to estimate present and future heat-health risks across U.S. cities. This research bridges climate and health research disciplines to support experiential learning and public health guidance to proactively mitigate risk. The outcomes of this research align with NSF’s mission to advance national health, prosperity, and welfare. Given the diverse social, environmental, economic, and health impacts of heat, society will broadly benefit through reduced heat-related illness, death, and hospitalizations, decreased energy costs, and improved well-being, productivity, and community resilience. To create insight into current and future heat exposures, vulnerabilities, and impacts, this project leverages research across disciplines to 1) quantify differences in heat stress and strain across climate types and built/natural environmental contexts in large U.S. cities, comparing validated human heat balance (HHB) models to simple bioclimate heat metrics; 2) integrate critical physiological and behavioral adaptations into heat-health estimates to account for the range of heat stress and strain responses; and 3) quantify future livability and survivability using HHB models and dynamically downscaled climate models within and across the U.S. These objectives acknowledge that an individual’s path from experiencing hot weather to heat stress, heat strain, and adverse health outcomes is indirect, multidimensional, and non-linear. Three integrated education objectives will (a) create, evaluate, and share novel experiential learning and outreach methods using a new heat chamber in the PI’s lab; (b) co-produce and disseminate practical heat-health guidance with public health collaborators; (c) support and inspire a diverse student population to explore interdisciplinary approaches in STEM. The coupling of human health models with weather and climate data will drive transformative thinking in climate adaptation and heat resilience research, introducing the notion that survivable does not equal livable. Key scientific contributions include a new modeling approach to better understand the range of human responses to heat; a novel assessment of the interactions between climate type, indoor and outdoor environmental contexts, human behavior, and physiology on human tolerance to oppressive heat; and a creative application of physiological advances that validate the use of sustainable, low-cost (i.e., no air conditioning) personal-level cooling strategies and their efficacy in current and projected U.S. climates. This project also advances discovery and promotes experiential and inclusive cross-disciplinary training, learning, and communication for students across education levels. Co-production efforts with public health officials, practitioners, and community members will directly support societal health. Such efforts will further build community-scale heat resilience and ensure that diverse populations benefit from location and person- and context-specific information for safe and sustainable personal cooling methods, heat coping strategies, and effective messaging, outreach, and engagement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极端高温是无形的、无声的、致命的,对全球人类健康和生产力产生负面影响。了解人们如何受到极端高温的影响,以及如何最好地科普,对于社会福祉和经济安全至关重要。随着城市的发展和气温的上升,迫切需要新的方法来适应热量。目前和未来热健康影响的现有模型侧重于生存能力,并过度简化了人们在室内和室外空间对热量的生理和行为反应。但可生存并不等于宜居--需要解决人类的复杂性,以充分了解导致热量成为健康危害的暴露途径。该学院早期职业发展(CAREER)补助金的目标是促进我们对极端高温在不同气候类型和室内室外环境中对人类健康的当前和未来影响的科学理解。人类热平衡模型,多尺度区域气候和建筑内部热暴露将与人类脆弱性和适应能力相结合,以估计美国城市目前和未来的热健康风险。这项研究将气候和健康研究学科联系起来,以支持体验式学习和公共卫生指导,从而主动减轻风险。这项研究的结果与NSF的使命一致,以促进国家健康,繁荣和福利。考虑到热对社会、环境、经济和健康的不同影响,社会将通过减少与热有关的疾病、死亡和住院、降低能源成本、改善福祉、生产力和社区复原力而广泛受益。 为了深入了解当前和未来的热暴露,脆弱性和影响,该项目利用跨学科的研究来1)量化美国大城市中气候类型和建筑/自然环境背景下热应力和应变的差异,将验证的人类热平衡(HHB)模型与简单的生物气候热指标进行比较; 2)将关键的生理和行为适应纳入热健康评估,以说明热应激和应变反应的范围;和3)量化未来的宜居性和生存能力,使用HHB模型和动态缩小规模的气候模型在美国境内和整个美国,这些目标承认,一个人的路径,从经历炎热天气对热应激、热应变和不良健康结果的影响是间接的、多维度的和非线性的。三个综合教育目标将:(a)使用PI实验室中的新热室创建,评估和分享新颖的体验式学习和推广方法;(B)与公共卫生合作者共同制作和传播实用的热健康指导;(c)支持和激励多元化的学生群体探索STEM的跨学科方法。将人类健康模型与天气和气候数据相结合,将推动气候适应和耐热性研究的变革性思维,引入可生存并不等于宜居的概念。关键的科学贡献包括一种新的建模方法,以更好地了解人类对热的反应范围;对气候类型,室内和室外环境背景,人类行为和生理学之间的相互作用进行了新的评估,对人类对压迫性热的耐受性;以及创造性地应用生理学进步,以验证可持续,低成本(即,无空调)个人水平的冷却策略及其在当前和预计的美国气候中的功效。该项目还推进发现,并促进体验和包容性的跨学科培训,学习和交流,为学生跨越教育水平。与公共卫生官员、从业人员和社区成员共同努力,将直接支持社会健康。这些努力将进一步建立社区规模的热适应能力,并确保不同的人群受益于特定于位置和个人和环境的信息,以获得安全和可持续的个人冷却方法,热应对策略,以及有效的信息传递,外展和参与。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrated Assessment of Urban Overheating Impacts on Human Life
- DOI:10.1029/2022ef002682
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Negin Nazarian;S. Krayenhoff;B. Bechtel;D. Hondula;R. Paolini;J. Vanos;T. Cheung;Wtl Chow;R. de Dear;Ollie Jay;Jason KW Lee;A. Martilli;Ariane Middel;L. Norford;Mahsan Sadeghi;M. Santamouris;S. Schiavon
- 通讯作者:Negin Nazarian;S. Krayenhoff;B. Bechtel;D. Hondula;R. Paolini;J. Vanos;T. Cheung;Wtl Chow;R. de Dear;Ollie Jay;Jason KW Lee;A. Martilli;Ariane Middel;L. Norford;Mahsan Sadeghi;M. Santamouris;S. Schiavon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Vanos其他文献
An update from the Chair of the students and new professionals Group of the International Society of Biometeorology
- DOI:
10.1007/s00484-017-1388-z - 发表时间:
2017-07-08 - 期刊:
- 影响因子:2.600
- 作者:
Jennifer Vanos - 通讯作者:
Jennifer Vanos
In memoriam of Professor Terry Gillespie
- DOI:
10.1007/s00484-021-02144-7 - 发表时间:
2021-05-10 - 期刊:
- 影响因子:2.600
- 作者:
Jennifer Vanos;Robert D. Brown - 通讯作者:
Robert D. Brown
Jennifer Vanos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Vanos', 18)}}的其他基金
Global Centers Track 2: Heat Adaptation
全球中心轨道 2:热适应
- 批准号:
2330587 - 财政年份:2024
- 资助金额:
$ 63.13万 - 项目类别:
Standard Grant
相似国自然基金
基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Land-Atmosphere Coupling and Feedback in the Context of Climate Change
职业:气候变化背景下的陆地-大气耦合和反馈
- 批准号:
2239877 - 财政年份:2023
- 资助金额:
$ 63.13万 - 项目类别:
Continuing Grant
Can air-sea coupling solve the signal-to-noise paradox in climate predictions?
海气耦合能否解决气候预测中的信噪悖论?
- 批准号:
2885250 - 财政年份:2023
- 资助金额:
$ 63.13万 - 项目类别:
Studentship
CAREER: CAS-Climate: Structure-Property-Performance Relationships of Iron- and Copper-Based Hybrid Mie-Resonator Photocatalysts for C-C and C-N Coupling Reactions
职业:CAS-气候:用于 C-C 和 C-N 偶联反应的铁基和铜基混合米氏谐振器光催化剂的结构-性能-性能关系
- 批准号:
2237454 - 财政年份:2023
- 资助金额:
$ 63.13万 - 项目类别:
Continuing Grant
CAREER: Advancing a macrosystems framework for climate-phenology coupling through integrated research and education
职业:通过综合研究和教育推进气候物候耦合的宏观系统框架
- 批准号:
2306198 - 财政年份:2022
- 资助金额:
$ 63.13万 - 项目类别:
Continuing Grant
Canada Excellence Research Chair in Artic Ice, Freshwater Marine Coupling and Climate Change
加拿大北极冰、淡水海洋耦合和气候变化卓越研究主席
- 批准号:
CERC-2018-00002 - 财政年份:2022
- 资助金额:
$ 63.13万 - 项目类别:
Canada Excellence Research Chairs
Canada 150 Research Chair in Climate Sea Ice Coupling
加拿大 150 气候海冰耦合研究主席
- 批准号:
C150-2017-00014 - 财政年份:2022
- 资助金额:
$ 63.13万 - 项目类别:
Canada 150 Research Chairs
CAS-Climate: Coupling Decarbonization of the Power System with Advance Planning for Integrating Negative Emission Technologies
CAS-气候:将电力系统脱碳与负排放技术整合的预先规划结合起来
- 批准号:
2132487 - 财政年份:2022
- 资助金额:
$ 63.13万 - 项目类别:
Standard Grant
Canada 150 Research Chair in Climate Sea Ice Coupling
加拿大 150 气候海冰耦合研究主席
- 批准号:
C150-2017-00014 - 财政年份:2021
- 资助金额:
$ 63.13万 - 项目类别:
Canada 150 Research Chairs
Radiation-circulation coupling of atmospheric climate changes
大气气候变化的辐射-环流耦合
- 批准号:
RGPIN-2019-05225 - 财政年份:2021
- 资助金额:
$ 63.13万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Coupling and Cohesion as Factors Affecting Vulnerability to Abrupt Climate Change
合作研究:耦合和凝聚力作为影响气候突变脆弱性的因素
- 批准号:
2120362 - 财政年份:2021
- 资助金额:
$ 63.13万 - 项目类别:
Standard Grant














{{item.name}}会员




